
Potential Theory for Schrödinger operators

on finite networks
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Dep. Matemàtica Aplicada III
Mod. C2, Campus Nord
C/ Jordi Girona Salgado 1–3
08034 Barcelona
Spain
Fax: +34 93 401 18 25
e-mail: enrique.bendito@upc.es, angeles.carmona@upc.es, andres.marcos.encinas@upc.es

1



1 Introduction

In the last years, a considerable amount of works that extend properties and results in elliptic
boundary value problems on Riemannian manifolds to the graph framework have been pub-
lished. Frequently, the discrete structure allows to obtain the fundamental features without the
technicalities that darken the results. Moreover, the simplicity of the discrete setting enables to
use successfully tools that do not seem to have a continuous counterpart.

In this paper we analyze the fundamental properties of a general class of Schrödinger oper-
ators on networks that includes those whose associated quadratic form is positive semidefinite
but it is not a Dirichlet form. Specifically, we study the monotonicity properties of this kind of
discrete operators, the variational treatment of Dirichlet problems and the properties of their
resolvent kernels. Besides, we take advantage of considering the Schrödinger operator as an
integral operator and then we build a Discrete Potential Theory for the (signed) kernel of such
integral operator.

A Schrödinger operator on a finite network is an operator of the form Lq = L + q, where
L is the combinatorial Laplacian of the network and q is a function on the vertex set. So, a
Schrödinger operator can be seen as a perturbation of the combinatorial Laplacian. It is well-
known that the quadratic form associated with this operator is a Dirichlet form if and only if
q is non-negative, [8]. Conversely, any Dirichlet form over a finite space, V , can be seen as
the Dirichlet form associated with a Schrödinger operator with non negative 0-order term on
a network that has V as vertex set. Here, we study under which condition the quadratic form
associated with a Schrödinger operator is positive semidefinite and we show that this condition
guarantees that an important family of contractions operates with respect to it.

The monotonicity properties of Schrödinger operators are well-known in the case q ≥ 0, see
for instance [14, 20]. In this paper we extend the above results to the case when Lq is only
positive semidefinite. We also prove a version of a discrete Hopf’s minimum principle, that has
not a continuous counterpart when q is non positive.

The Potential Theory associated with Dirichlet Forms has been extensively treated in the
literature, see for instance [2, 14, 20]. Alternatively, for the standard case in which q ≥ 0, the
authors developed a Potential Theory with respect to the kernel associated with the operator
Lq when it is seen as an integral operator, see [4]. Here we extend these techniques when
Lq is positive semidefinite. This tool, that has not a continuous equivalent, allows to obtain
systematically explicit expressions of the resolvent kernels.

The paper is organized as follows. In Section 2 we give the basic concepts and notations on
networks and we analyze the functions that can be used to perturb the combinatorial Laplacian in
such a way that the corresponding Schrödinger operator be positive semidefinite. In particular,
we show that for any proper subset we can consider functions of this type that are totally
negative on it. Moreover, we prove that the lower bound of such functions depends only on the
network geometry.
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The properties of the quadratic form associated with positive semidefinite Schrödinger oper-
ators are studied in Section 3. We show that they are characterized for being non increasing with
respect to a transformation determined by the ground state, that is, the positive eigenfunction
associated to the minimum eigenvalue of the Schrödinger operator. Moreover, we obtain that
each quadratic form of this type takes the same values as the Dirichlet form associated with a
Schrödinger operator on a new network whose conductances are given by the conductances of
the original network and by the value of the ground state.

In Section 4 we show that the monotonicity property is equivalent to a version of a general
minimum principle under the hypothesis of positive semidefiniteness of the Schrödinger oper-
ators. As a consequence, we establish a generalization of the well-known Condenser principle
where the prescribed value at the positive plate is given by the ground state.

In Section 5 we study the Green and Poisson kernels associated to Dirichlet problems. We
determine the relation between them and we show that their properties are similar to the ones
verified by the analogous kernels in the continuous case. We also build the generalized Green
kernels associated with a singular Schrödinger operator. In addition we show that, in this fra-
mework, an elementary discrete version of the Schwartz’s Kernel Theorem makes sense, which
allows us to consider the kernel associated with a positive semidefinite Schrödinger operator.
In the last section, we investigate the properties of these kernels in the context of the Discrete
Potential Theory. We prove that the Schrödinger kernel satisfies the equilibrium principle which,
in particular, enables us to obtain explicit expressions of the Green and Poisson kernel in terms
of equilibrium measures.

2 Preliminaries

Let Γ = (V, E, c) be a finite network, that is, a finite connected graph without loops nor mul-
tiple edges, with vertex set V and edge set E, in which each edge (x, y) has been assigned a
conductance c(x, y) > 0. Moreover, c(x, y) = c(y, x) and c(x, y) = 0 if (x, y) /∈ E. We say that
x is adjacent to y, x ∼ y, if (x, y) ∈ E and for all x ∈ V , the value k(x) =

∑
y∈V

c(x, y) is called

total conductance at x or degree of x. A path of length m ≥ 1 is a sequence {x1, . . . , xm+1} of
vertices such that c(xi, xi+1) > 0, or equivalently xi ∼ xi+1, i = 1, . . . , m. That Γ is connected
means that any two vertices of V can be joined by a path. More generally, a subset F of V
is said to be connected if each pair of vertices of F is joined by a path entirely contained in
F . If x 6= y, we denote by d(x, y) the minimum length between the paths joining x and y.
Defining d(x, x) = 0, the application d determines a metric on V whose associated topology is
the discrete one. For this reason we will prefer to use geometric concepts instead of topolog-
ical ones. So, given F ⊂ V , we denote by F c its complementary in V and we call interior,

vertex boundary, closure and exterior of F the subsets
◦
F= {x ∈ F : y ∈ F for all y ∼ x},

δ(F ) = {x ∈ V : d(x, F ) = 1}, F̄ = {x ∈ V : d(x, F ) ≤ 1} and Ext(F ) = {x ∈ V : d(x, F ) ≥ 2},
respectively. Observe that when F 6= ∅ unlike the topological case, δ(F )∩ δ(F c) = ∅ and F̄ = F

or
◦
F= F iff F = V . However, the following relations, which are similar to the topological ones,
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are satisfied: F̄ = F ∪ δ(F ), F = δ(F c)∪
◦
F , δ(F c)∩

◦
F= ∅, δ(

◦
F ) ⊂ δ(F c) and Ext(F ) = V \ F̄ .

Moreover, when F is connected then F̄ is also connected, but
◦
F is not connected, in general.

The set of functions on V , denoted by C(V ), and the set of non-negative functions on V ,
C+(V ), are naturally identified with IRn and the positive cone of IRn, respectively, where n = |V |.
If u ∈ C(V ), its support is given by supp(u) = {x ∈ V : u(x) 6= 0}. Moreover, if F is a non empty
subset of V , we consider the sets C(F ) = {u ∈ C(V ) : supp(u) ⊂ F}, C+(F ) = C(F ) ∩ C+(V )
and C∗(F ) = {u ∈ C+(F ) : supp(u) = F}. For each F ⊂ V , the characteristic function of F
will be denoted by 1F . When F = V we will omit the subscript, whereas when F = {x}, its
characteristic function will be denoted by εx.

Throughout the paper dx will denote the counting measure on V and hence for all u ∈ C(V ),∫

V
u dx =

∑

x∈V

u(x). In the sequel, we suppose that C(V ) is endowed with the Hilbert space

structure induced by dx and for each u ∈ C(V ) we will denote by ||u||2 the associated norm.

The combinatorial Laplacian of Γ is the linear operator L : C(V ) −→ C(V ) that assigns to

each u ∈ C(V ) the function L(u)(x) =
∫

V
c(x, y) (u(x) − u(y)) dy. If F is a proper subset of

V , for each u ∈ C(V̄ ) we define the normal derivative of u as the function in C(δ(F )) given by(
∂u

∂n

)
(x) =

∫

F
c(x, y) (u(x) − u(y)) dy, for all x ∈ δ(F ), see for instance [4, 9]. The relation

between the values of the combinatorial Laplacian on F and the values of the normal derivative
at δ(F ) is given by the Second Green Identity, proved in [4]

∫

F

(
vL(u)− uL(v)

)
dx =

∫

δ(F )

(
u

∂v

∂n
− v

∂u

∂n

)
dx, for all u, v ∈ C(F̄ ).

When F = V the above identity tell us that the combinatorial Laplacian is a self-adjoint operator

and that
∫

V
L(u)dx = 0 for any u ∈ C(V ). Moreover, since Γ is connected L(u) = 0 iff u is a

constant function.

A Schrödinger operator on Γ is a linear operator Lq : C(V ) −→ C(V ) that assigns to each
u ∈ C(V ) the function Lq(u)(x) = L(u)(x) + q(x)u(x), where q is an arbitrary function in
C(V ), see [11]. In an equivalent manner, a Schrödinger operator on Γ is nothing but a 0-order
perturbation of the combinatorial Laplacian.

Observe that if u ∈ C(V ) and F = supp(u), then Lq(u) = L(u) on F c. Moreover, if
u ∈ C+(V ), then Lq(u) < 0 on δ(F ) and Lq(u) = 0 on Ext(F ). On the other hand, a Schrödinger

operator is self-adjoint in the sense that
∫

V
vLq(u) dx =

∫

V
uLq(v) dx for all u, v ∈ C(V ).

For fixed q ∈ C(V ) and for each non empty subset F of V , we consider the following boundary
value problem: given f ∈ C(F ) and g ∈ C(δ(F )) find u ∈ C(F̄ ) such that

Lq(u)(x) = f(x), if x ∈ F,

u(x) = g(x), if x ∈ δ(F ).



 [BVP]
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When F 6= V this problem is known as Dirichlet problem on F , whereas if F = V it is called
Poisson equation on V . It is clear that when F 6= V , the Dirichlet problem on F is equivalent
to the following semi-homogeneous Dirichlet problem

Lq(u)(x) = f(x)− L(g)(x), if x ∈ F,

u(x) = 0, if x ∈ δ(F ).



 [BVP]0

So, for each non empty subset F ⊂ V , the study of existence and uniqueness of solution for
[BVP] is reduced to the study of existence and uniqueness of solution of the following problem:

Given f ∈ C(F ) find u ∈ C(F ) such that Lq(u) = f on F . [P]

Clearly, [BVP] or equivalently [P], is a self-adjoint problem since
∫

F
vLq(u) dx =

∫

F
uLq(v) dx

for all u, v ∈ C(F ). When q ∈ C+(V ) these boundary value problems have been extensively
treated, see for instance [3, 4, 10, 15, 20]. Moreover, the authors have proved in [4] that the
analysis of self-adjoint boundary value problems with general boundary conditions, namely Neu-
mann, Robin or mixed boundary conditions, can be reduced to the study of a boundary value
problem like [BVP] on a suitable network. For this reason, although in this paper we only
consider Dirichlet problems and Poisson equations, all the results that will be obtained here
concerning Schrödinger operators are in force for general boundary conditions.

To begin with, if σ ∈ C∗(V ), then for each u ∈ C(V ) and for each x, y ∈ V it is verified that

σ(x) (u(x)− u(y)) = σ(x) σ(y)
(

u(x)
σ(x)

− u(y)
σ(y)

)
+ (σ(x)− σ(y))u(x).

Therefore, considering the function qσ = − 1
σ
L(σ), we obtain

Lq(u)(x) =
1

σ(x)

∫

V
c(x, y)σ(x)σ(y)

(
u(x)
σ(x)

− u(y)
σ(y)

)
dy + (q(x)− qσ(x))u(x), (1)

for each u ∈ C(V ) and for each x ∈ V . As we will see in the following section, from this
expression it follows easily that Lq is positive semidefinite when q ≥ qσ for some σ ∈ C∗(V ).
This condition turns into q ∈ C+(V ) when σ is constant. Before we go on, let us show some
properties of the qσ-type functions.

Lemma 2.1 If σ, µ ∈ C∗(V ) then qσ ≥ qµ iff qσ = qµ and this occurs iff σ = aµ, for some
a > 0.

Proof. The first claim follows straightforwardly from the identities
∫

V
(qσ − qµ)σµ dx =

∫

V

(
σL(µ)− µL(σ)

)
dx = 0.
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Moreover, it is obvious that qσ = qµ when σ = aµ, a > 0. Conversely, if qσ = qµ then for all
x ∈ V we get that

0 = σ(x)µ(x)
(
qσ(x)− qµ(x)

)
=

∫

V
c(x, y)

(
µ(x)σ(y)− σ(x)µ(y)

)
dy

=
∫

V
c(x, y)µ(x)µ(y)

(
σ(y)
µ(y)

− σ(x)
µ(x)

)
dy.

If we consider the network Γ̄ = (V,E, c̄), where c̄(x, y) = c(x, y)µ(x)µ(y), then Γ̄ is connected
and if L̄ denotes its associated combinatorial Laplacian, then L̄(σ

µ) = 0 and hence σ = aµ, a > 0.

The above result establishes that the function qσ determines σ ∈ C∗(V ) up to multiplicative
constant. In the most part of the paper, this lack of uniqueness will not be relevant. However,
when it be suitable we will determine uniquely σ from qσ throughout a normalization criterium.
On the other hand, we also conclude that when qσ 6= qµ, qσ determines a family of functions q
for which Lq is positive semidefinite that is essentially different of the family determined by qµ.

When σ is not a constant function, qσ takes necessarily negative and positive values, since∫

V
σ qσ dx = −

∫

V
L(σ) dx = 0. Therefore, the condition q ≥ qσ allows q to take negative

values keeping the semipositive definiteness of Lq. Next, we show throughout examples some
aspects about the behavior of function qσ. Firstly, we get upper and lower bounds for such a

function. Since for each x ∈ V , qσ(x) =
1

σ(x)

∫

V
c(x, y)(σ(y)− σ(x)) dy, if σm = min

x∈V
{σ(x)} and

σM = max
x∈V

{σ(x)}, then

k(x)
( σm

σM
− 1

)
≤ qσ(x) ≤ k(x)

(σM

σm
− 1

)
, x ∈ V.

In particular, this implies that qσ(x) > −k(x), for all x ∈ V .

The function σ can be chosen in such a way that qσ be a rapidly oscillating function.
Specifically, consider a sequence of proper subsets of V , {Fi}m

i=1, such that F̄i ⊂ Fi+1 for
all i = 1, . . . ,m − 1 and take F0 = ∅ and Fm+1 = V . Fixed t ∈ (0, 1), we define σt(x) = 1
if x ∈ Fi where i is odd and σt(x) = t, if x ∈ Fi when i is even. Then, for all x ∈ Fi,

qσt(x) = ai

∫

Fi−1∪Fi+1

c(x, y) dy, where ai = (t − 1), if i is odd and ai = (1
t − 1), if i is even. In

particular when m = 1, letting F = F1, we obtain qσt(x) < 0 if x ∈ δ(F c), qσt(x) > 0 if x ∈ δ(F )
and qσt(x) = 0, otherwise.

Next we also show that for any proper subset F ⊂ V , there exists σ ∈ C∗(V ) such that
qσ(x) < 0 for all x ∈ F . The key tool is the equilibrium measure for F , with respect to the
kernel L. Specifically, let νF ∈ C∗(F ) be the unique measure such that LνF = 1 in F . The
existence of such a measure was proved in [4], but it can be also deduced from the results we will

obtain throughout this paper. Letting CF = max
x∈δ(F c)

∫

δ(F )
c(x, y) dy, we define σ = νF + a 1

Fc
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where 0 < a < C−1
F

. Then,

qσ(x) =





− 1
νF (x)

, if x ∈
◦
F ,

− 1
νF (x)

(
1− a

∫

δ(F )
c(x, y)dy

)
, if x ∈ δ(F c),

−1
a

∫

δ(F c)
c(x, y)

(
a− νF (y)

)
dy, if x ∈ δ(F ),

0, if x ∈ Ext(F ).

So, qσ(x) < 0 for all x ∈ F . To end this section, we build a function of this type for a subset F
of a distance-regular graph of degree k, such that |F | = n− 1. Fixed y ∈ V , let F = V \ {y}. In
this case,

νF (x) =
d(x,y)−1∑

j=0

n− |Bj |
|∂Bj | , x ∈ V,

where Bj = {z ∈ V : d(z, y) ≤ j} and ∂Bj = {(x, y) ∈ E : x ∈ Bc
j , y ∈ Bj}, (see [4].) Moreover,

CF = 1 and therefore if 0 < a < 1 then

qσ(x) =





−



d(x,y)−1∑

j=0

n− |Bj |
|∂Bj |



−1

, if d(x, y) ≥ 2,

− k

n− 1
(1− a), if d(x, y) = 1,

n− 1
a

− k, if x = y.

3 Bilinear forms associated to Schrödinger operators

In this section we start obtaining the expression of the bilinear form, Eq, associated with the
Schrödinger operator Lq. Clearly, for u, v ∈ C(V ) we get that

Eq(u, v) =
1
2

∫

V

∫

V
c(x, y) (u(x)− u(y)) (v(x)− v(y)) dx dy +

∫

V
q(x) u(x) v(x) dx. (2)

It is well-known that when q ∈ C+(V ), the quadratic form associated with Eq satisfies important
properties. Our aim in this section is to study both the properties that are in force and the new
ones when we eliminate the constraint on q of being non negative. So, to compare the general
case with the non negative one, it will be suitable to summarize the known properties for the
case in which the operator Lq has associated a Dirichlet form, see [1, 2, 8, 14].

A transformation T : C(V ) −→ C(V ) is called contraction if for all u ∈ C(V ),

|T (u)(x)− T (u)(y)| ≤ |u(x)− u(y)| for all x, y ∈ V.
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Moreover, a contraction T is called normal contraction if |T (u)| ≤ |u|, for all u ∈ C(V ). The
three fundamental normal contractions are:

a) The null contraction, T (u) = 0, for all u ∈ C(V ).

b) The modulus contraction, T (u) = |u|, for all u ∈ C(V ).

c) The unit contraction, T (u) = u+ ∧ 1, for all u ∈ C(V ).

If E : C(V ) × C(V ) −→ IR is a symmetric bilinear form we say that a transformation T :
C(V ) −→ C(V ) operates with respect to E if E(T (u), T (u)) ≤ E(u, u), for all u ∈ C(V ). Clearly,
the null contraction operates w.r.t. E iff E is positive semidefinite and the modulus contraction
operates w.r.t. E iff E(εx, εy) ≤ 0, for all x, y ∈ V, x 6= y.

A symmetric bilinear form E : C(V ) × C(V ) −→ IR is called a Dirichlet form if the unit
contraction operates w.r.t. E , that is if E(u+ ∧ 1, u+ ∧ 1) ≤ E(u, u), for all u ∈ C(V ). The
following result is well-known, see [1].

Proposition 3.1 A symmetric bilinear form E is a Dirichlet form iff any normal contraction
operates w.r.t. E. Moreover, this condition is equivalent to the following ones: E(εx, εy) ≤ 0, for

all x, y ∈ V, x 6= y and
∫

V
E(εz, εy) dy ≥ 0, for all z ∈ V .

As Eq(εx, εy) = −c(x, y), for all x, y ∈ V, x 6= y, and q(x) =
∫

V
Eq(εx, εy) dy, for all x ∈ V , from

the above proposition it follows that Eq is a Dirichlet form iff q ∈ C+(V ).

Next we tackle the study of Eq when it is not necessarily a Dirichlet form. Since for arbitrary
q ∈ C(V ) the modulus contraction operates w.r.t. Eq, we are interested in identifying those
q ∈ C(V ) for which the null contraction operates w.r.t. Eq. Firstly, note that if σ ∈ C∗(V ), by
identity (1), the bilinear form Eq can be re-written as

Eq(u, v) =
1
2

∫

V

∫

V
c(x, y)σ(x)σ(y)

(
u(x)
σ(x)

− u(y)
σ(y)

) (
v(x)
σ(x)

− v(y)
σ(y)

)
dx dy

+
∫

V
(q(x)− qσ(x))u(x)v(x) dx.

(3)

So, Eq is positive semidefinite when q ≥ qσ. Moreover, the above expression motivates the
following concepts.

Definition 3.2 If σ ∈ C∗(V ), we say that T : C(V ) −→ C(V ) is a σ-contraction if for all
u ∈ C(V ), ∣∣∣∣

T (u)(x)
σ(x)

− T (u)(y)
σ(y)

∣∣∣∣ ≤
∣∣∣∣
u(x)
σ(x)

− u(y)
σ(y)

∣∣∣∣ , for all x, y ∈ V.

A σ-contraction T is called normal σ-contraction if |T (u)| ≤ |u|, for all u ∈ C(V ).
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Note that the null and the modulus contractions are normal σ-contractions for all σ ∈ C∗(V ).
Moreover, when σ is constant then the σ-contractions are exactly the contractions. More gen-
erally, T is a σ-contraction (normal σ-contraction) iff there exists T̂ a contraction (normal
contraction) such that T (u) = σT̂ (u

σ ), for all u ∈ C(V ).

The properties of the quadratic forms associated with Schrödinger operators are gathered
together in the following result.

Proposition 3.3 Let Eq be the bilinear form associated with the Schrödinger operator Lq. Then
the following statements are equivalent:

(i) The bilinear form Eq is positive semidefinite.

(ii) There exist σ ∈ C∗(V ) and a ≥ 0 such that q = qσ + a 1.

(iii) There exists σ ∈ C∗(V ) such that q ≥ qσ.

(iv) There exists σ ∈ C∗(V ) such that any normal σ-contraction operates w.r.t. Eq.

(v) There exists σ ∈ C∗(V ) such that Eq(u+ ∧ σ, u+ ∧ σ) ≤ Eq(u, u), for any u ∈ C(V ).

Proof. If Eq is positive semidefinite, then the matrix associated with Eq, is a symmetric posi-
tive semidefinite matrix with non positive off-diagonal entries, i.e., a symmetric M-matrix. In
addition, it is irreducible since Γ is connected. Then, its lowest eigenvalue, a, is non negative and
has an eigenvector, σ, whose entries are strictly positive, (see [6, Th. 4.16]). So, L(σ)+q σ = a σ
which implies that q = qσ + a 1.

Clearly, (ii) implies (iii) and (iii) implies (iv) by expression (3). Moreover, (iv) implies (v),
since T (u) = u+ ∧ σ is a normal σ-contraction.

At last, if (v) holds then to prove (i) it is enough to show that q ≥ qσ. So, for each x ∈ V
and t > 0 consider ut = σ+ tεx. Then, u+

t ∧σ = σ which implies that 0 ≤ 2Eq(σ, εx)+ tEq(εx, εx)
for all t > 0 and hence 0 ≤ Eq(σ, εx) = (q(x)− qσ(x))σ(x).

Observe that if q is such that Eq is positive semidefinite then the function qσ and the value
a obtained in part (ii) of the above proposition are uniquely determined, since if qσ + a = qµ + b
and a ≥ b, then qµ − qσ ≥ 0 which implies, by Lemma 2.1, qµ = qσ and hence a = b. Therefore,

if we define C∗n(V ) =
{

σ ∈ C∗(V ) :
1
n

∫

V
σdx = 1

}
, then the set

⋃
σ∈C∗n(V )

{qσ + a : a ≥ 0} is a

partition of the set of functions q such that Eq is positive semidefinite.

Corollary 3.4 Let Eq be the bilinear form associated with the Schrödinger operator Lq. Then
the following statements are equivalent:

(i) There exists σ ∈ C∗(V ) such that any σ-contraction operates w.r.t. Eq.
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(ii) The bilinear form Eq is positive semidefinite but not strictly definite.

(iii) There exists σ ∈ C∗(V ) such that q = qσ.

Proof. If (i) is satisfied, Eq is positive semidefinite and hence Eq(σ, σ) ≥ 0, since any normal σ-
contraction is a σ-contraction by Proposition 3.3. On the other hand, since the transformation
T (u) = u + σ is a σ-contraction, 4 Eq(σ, σ) = Eq(T (σ), T (σ)) ≤ Eq(σ, σ), which implies that
Eq(σ, σ) = 0.

If (ii) is satisfied, then by Proposition 3.3, there exists σ ∈ C∗(V ) such that q ≥ qσ. In
addition, since Eq is not strictly definite there exists non-zero u ∈ C(V ) such that Eq(u, u) = 0
and then

0 =
1
2

∫

V

∫

V
c(x, y)σ(x)σ(y)

(
u(x)
σ(x)

− u(y)
σ(y)

)2

dx dy =
∫

V
(q(x)− qσ(x))u(x)2dx.

Since Γ is connected, the first equality implies that u is a non-zero multiple of σ and therefore
q = qσ, from the second equality.

Finally, it is clear that (iii) implies (i).

From the expression (3) it is clear that, if for each σ ∈ C∗(V ) we define the network Γ̂ =
(V, E, c · σ ⊗ σ) then Eq(u, v) = Ê(u

σ , v
σ ), where Ê is the bilinear form associated with the

Schrödinger operator L̂+ (q − qσ) and where L̂ is the combinatorial Laplacian of Γ̂. The above
results show that Eq is a positive semidefinite form iff there exists σ ∈ C∗(V ) such that Ê is a
Dirichlet form.

We conclude this section observing that we have proved that the Schrödinger operator Lq is
positive semidefinite iff there exists σ ∈ C∗(V ) such that q ≥ qσ. In addition if q 6= qσ, then Lq is
invertible, whereas if q = qσ then Lq is singular. In this case, the eigenvalue 0 is simple and its
eigenvector subspace is generated by σ. These properties allow to obtain the following results
about the existence and uniqueness of solution for [BVP] and about its variational formulation.

Proposition 3.5 (Dirichlet principle) Let F be a non empty subset of V , and suppose that there
exists σ ∈ C∗(V ) such that q ≥ qσ. Given f ∈ C(F ) and g ∈ C(δ(F )), consider the convex set
Cg = {v ∈ C(F̄ ) : v = g on δ(F )} and the quadratic functional Jq: C(V ) −→ IR determined by
the expresion

Jq(u) =
1
2

∫

F̄

∫

F̄
c(x, y) (u(x)− u(y))2dx dy +

∫

F̄
q(x) u(x)2 dx− 2

∫

F
f(x) u(x) dx.

Then u ∈ C(F̄ ) is a solution of [BVP] iff u minimizes Jq on Cg. Moreover, if it is not simulta-
neously true that F = V and q = qσ, then Jq has a unique minimum on Cg. Otherwise, Jq has

a minimum iff
∫

V
f(x)σ(x)dx = 0. In this case, there exists a unique minimum u ∈ C(V ) such

that
∫

V
u(x)σ(x)dx = 0.

10



Proof. Observe first that Cg = g + C(F ) and that as Jq(v) = Eq(v, v) − 2
∫

F
f v dx, for all

v ∈ C(F ), then by Proposition 3.3, Jq is a convex functional on C(F ) and hence on Cg. Moreover,
by Corollary 3.4, it is an strictly convex functional iff it is not simultaneously true that F = V
and q = qσ and then Jq has a unique minimum on Cg.

On the other hand, when F = V and q = qσ simultaneously the minima of Jq are character-

ized by the Euler identity: Eq(u, v) =
∫

V
f v dx, for all v ∈ C(V ). Since in this case Eq(u, σ) = 0

for all u ∈ C(V ), necessarily f must satisfy that
∫

V
f σ dx = 0. Moreover if this condition holds

and V denotes the vectorial subspace generated by σ, then u ∈ V⊥ minimizes Jq on V⊥ iff u
minimizes Jq on C(V ) and the existence of minimum follows since Jq is strictly convex on V⊥.

In any case, the equation described in [BVP] is the Euler-Lagrange identity for the corre-
sponding minimization problem.

The above proposition establishes that when q = qσ the Poisson equation Lq(u) = f has a

solution iff
∫

V
f σ dx = 0. Observe that under this condition if v is a solution, then the set of

solutions is given by {v + a σ : a ∈ IR} and hence u = v − σ

||σ||2
2

∫

V
v σ dx is the unique solution

such that
∫

V
uσ dx = 0.

4 Monotonicity of the Schrödinger operators

It is well-known that when q ≥ 0, the Schrödinger operator Lq, satisfies the weak minimum
principle which is equivalent to the monotonicity property, see for instance [19, 20]. Essentially,
this is the discrete analogous of the weak minimum principle for second order elliptic operators
(see [13].) In this section, we start by showing the monotonicity property of a Schrödinger
operator when its associated bilinear form is positive semidefinite. We will also deduce some
relevant consequences of this fact. Unlike the continuous case, in the discrete framework there
is not difference between classical and weak solutions of Dirichlet problems. Therefore, we will
prove a discrete analogue of the Hopf’s minimum principle. To our knowledge, up to now this
property has not been analyzed in the discrete case, even in the case q ≥ 0. An important
consequence of Hopf’s minimum principle is a generalization of the condenser problem for the
Schrödinger operator Lq. In addition, the solution of this problem allows us to extend the
concept of effective resistance between two subsets of V .

If it is not mentioned otherwise, in the rest of this section we will assume the following
hypotheses:

H1: There exists σ ∈ C∗(V ) such that q ≥ qσ.

11



H2: It is not simultaneously true that F = V and q = qσ, that is F is any non empty subset
of V except when q = qσ in which case F is a proper subset.

The following result establishes the monotonicity of the Schrödinger operators, under the
above-mentioned hypotheses.

Proposition 4.1 If u ∈ C(V ) is such that Lq(u) ≥ 0 on F and u ≥ 0 on F c, then u ∈ C+(V ).

Proof. If we denote v =
u

σ
, then to conclude it is enough to prove that v ∈ C+(F ). Indeed, if

x ∈ F is such that v(x) = min
z∈F

{v(z)} it suffices to prove that v(x) ≥ 0, or equivalently that if

v(x) ≤ 0 then necessarily v(x) = 0.

Suppose that v(x) ≤ 0. Then v(x) ≤ v(y) for all y ∈ V and therefore, from expression (1)
we deduce that

0 ≤ Lq(u)(x) =
1

σ(x)

∫

V
c(x, y)σ(x)σ(y)(v(x)− v(y))dy + (q(x)− qσ(x))σ(x) v(x) ≤ 0,

which implies that v(x) = v(y) for all y ∈ V such that x ∼ y. Hence v = a 1, with a ∈ IR, since
Γ is connected.

When F 6= V , necessarily v(x) = 0, since v ≥ 0 on F c, whereas if F = V , as q 6= qσ and
0 = Lq(u) = a (q − qσ) σ, then a = 0.

Observe that when q = qσ, then
∫

V
σ(x)Lq(u)(x) dx = 0, for all u ∈ C(V ). Therefore, if

u ∈ C(V ) is such that Lq(u) ≥ 0, then Lq(u) = 0 and u = a σ, a ∈ IR. This result can be
obtained by reasoning as in the above proposition.

Corollary 4.2 Let p ∈ C(V ) be such that p ≥ q. If u, v ∈ C(V ) satisfy that Lq(u) ≥ Lp (v) ≥ 0
on F and u ≥ v ≥ 0 on F c, then u ≥ v ≥ 0 on V .

Proof. By the above proposition, we have that v ∈ C+(V ). On the other hand, since Lq =
Lp − (p− q), the function w = u− v satisfies that Lq(w) = Lq(u)−Lp (v) + (p− q) v ≥ 0 on F
and w ≥ 0 on F c. So, the result follows from the above proposition.

Now, we obtain a new proof of the existence and uniqueness of solution for problem [P],
which includes a property of the support of the solution.

Corollary 4.3 For each f ∈ C(F ) there exists a unique u ∈ C(F ) such that Lq(u) = f on F .
In addition, if f ∈ C+(F ) then u ∈ C+(F ) and supp(f) ⊂ supp(u).
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Proof. Consider the endomorphism F : C(F ) −→ C(F ) given by F(u) = Lq(u)|F . By Propo-
sition 4.1, F is monotone which implies that it is an isomorphism and that u ∈ C+(F ) when

f ∈ C+(F ). Moreover if u(x) = 0, then f(x) = Lq(u)(x) = −
∫

V
c(x, y) u(y) dy ≤ 0 and hence

f(x) = 0.

The monotonicity property of the operator Lq showed in Proposition 4.1, can be interpreted
as, and in fact is equivalent to, a weak minimum principle for the difference operator Lq. We
next show that such property is in fact a strong minimum principle. Before describing the
results we must point out that, unlike the continuous case, in the discrete setting concepts such
as interior, boundary and closure of a set have geometrical nature. So, we can consider two
types of boundaries associated with a set F , its vertex or exterior boundary δ(F ) and its interior
boundary, δ(F c). Both boundaries have been considered in the literature, depending on which
set plays the role of open set. The first case correspond to consider F as an open set, see for

instance [4, 9], whereas in the second one this role is played by
◦
F , see for instance [12, 15]. The

Second Green Identity and the fact that F ∩ δ(F ) = ∅ whereas
◦
F ∪ δ(

◦
F ) 6= F in general, are

some of the reasons why we prefer the exterior boundary formulation. However, in the following
results both types of boundaries will be considered.

Proposition 4.4 (Minimum principle) Suppose that q = qσ and let F be a proper connected
subset. If u ∈ C(F̄ ) is such that Lq(u) ≥ 0 on F , then

min
x∈δ(F )

{
u(x)
σ(x)

}
≤ min

x∈δ(F c)

{
u(x)
σ(x)

}
≤ min

x∈
◦
F

{
u(x)
σ(x)

}
.

Moreover, the first inequality is an equality iff u coincides on F̄ with a multiple of σ.

Proof. To prove the first inequality, let m = min
x∈δ(F )

{
u(x)
σ(x)

}
and consider w = u − mσ|F̄ . Of

course, Lq(w) = Lq(u) ≥ 0 on F and w ≥ 0 on F c, which implies w ≥ 0 on V , by Proposition
4.1. Therefore, m = min

x∈F̄

{
u(x)
σ(x)

}
.

Repeating the same argument for the set H =
◦
F and for the function u|H̄ and keeping in

mind that F = δ(F c)∪
◦
F and that δ(

◦
F ) ⊂ δ(F c) we get the second inequality.

On the other hand, if we consider v = w
σ = u

σ −m, then v ≥ 0 on F̄ . Moreover, if x∗ ∈ F is
such that m = u(x∗)

σ(x∗) , it follows v(x∗) = 0. Reasoning as in Proposition 4.1, we get v(z) = 0 for
each z ∈ F̄ such that z ∼ x∗. Iterating this argument, we conclude that v = 0 on F̄ , since F̄ is
connected.

Of course an analogous result is satisfied for the maximum values of functions u ∈ C(V ) such
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that Lq(u) ≤ 0 on F . The following result combines both cases and it is a discrete analogue of
the maximum and minimum principles for functions such that Lq(u) = 0.

Corollary 4.5 Suppose that q = qσ and let F be a proper connected subset. If u ∈ C(F̄ ) is such
that Lq(u) = 0 on F , then the following properties hold:

(i) For all x ∈ F , min
z∈δ(F )

{
u(z)
σ(z)

}
≤ u(x)

σ(x) ≤ max
z∈δ(F )

{
u(z)
σ(z)

}
and either of the two inequalities is an

equality iff u coincides on F̄ with a multiple of σ.

(ii) For all x ∈
◦
F , min

z∈δ(F c)

{
u(z)
σ(z)

}
≤ u(x)

σ(x) ≤ max
z∈δ(F c)

{
u(z)
σ(z)

}
.

We must observe that the minimum principle for discrete Schrödinger operators, studied in the
above proposition, is sharper than its continuous analogue, since in the continuous case the
0-order term must vanish whereas in the discrete setting the condition is q = qσ. In particular,
when F 6= V we know that there exists σ ∈ C∗(V ) such that qσ < 0 on F . So, the minimum
principle in the discrete case can be verified for Schrödinger operators with suitable negative
0-order terms.

Now, we prove the minimum principle when q ≥ qσ. We remark that although the results
are analogous to those of the continuous case, we can not employ the same techniques that in
[13], because they are based on continuity arguments.

Proposition 4.6 (Hopf’s minimum principle) Consider F a non empty connected subset and
u ∈ C(F̄ ) such that Lq(u) ≥ 0 on F and suppose that there exists x∗ ∈ F such that u(x∗) ≤ 0

and
u(x∗)
σ(x∗)

= min
x∈F̄

{
u(x)
σ(x)

}
. Then u coincides on F̄ with a non positive multiple of σ, Lq(u) = 0

on F and either u = 0 or q = qσ on F .

Proof. Taking in mind the expression (1) for Lq, we have that Lq(u)(x∗) ≤ 0 and therefore,

Lq(u)(x∗) = 0. This implies that
u(y)
σ(y)

=
u(x∗)
σ(x∗)

for all y ∼ x∗ and either u(x∗) = 0 or

q(x∗) = qσ(x∗). The result follows by reasoning as in Proposition 4.1.

Under the above conditions, when F = V hypothesis H2 implies that u = 0. On the
other hand, by applying the Hopf’s minimum principle to −u, it is easy to conclude the Hopf’s
maximum principle, that is if u ∈ C(F̄ ) is such that Lq(u) ≤ 0 on F , then the maximum value
of u

σ on F̄ can not be attained at F if it is positive, except when u is a non negative multiple of
σ.

The general minimum principle can be obtained as a consequence of Hopf’s minimum princi-
ple. Before proving it, we show that the sets of supersolutions and subsolutions of the equation
Lq(u) = 0 are closed by taking min and max respectively.
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Lemma 4.7 Given u, v ∈ C(V ), consider the sets F1 = {x ∈ V : Lq(u)(x) ∧ Lq(v)(x) ≥ 0}
and F2 = {x ∈ V : Lq(u)(x) ∨ Lq(v)(x) ≤ 0}. Then, Lq(u ∧ v)(x) ≥ 0 for all x ∈ F1 and
Lq(u ∨ v)(x) ≤ 0 for all x ∈ F2.

Proof. It suffices to note that when u(x) ≤ v(x), then Lq(u ∧ v)(x) ≥ Lq(u)(x) and Lq(u ∨
v)(x) ≤ Lq(v)(x).

Corollary 4.8 Let F be a proper subset of V , u ∈ C(F̄ ) such that Lq(u) ≥ 0 on F . Then,

min
δ(F )

{
u ∧ 0

σ

}
≤ min

F

{
u

σ

}
and min

δ(F c)

{
u ∧ 0

σ

}
≤ min

◦
F

{
u

σ

}
.

Proof. If v = u∧0, then from the above lemma we get that Lq(v) ≥ 0 on F . Since v ≤ 0 on V ,
by applying the Hopf’s minimum principle to each connected component of F we obtain that

min
δ(F )

{
v

σ

}
≤ min

F

{
v

σ

}
≤ min

F

{
u

σ

}
and min

δ(F c)

{
v

σ

}
≤ min

◦
F

{
v

σ

}
≤ min

◦
F

{
u

σ

}
,

where we have also used that u ∧ 0 ≤ u.

Of course when Lq(u) ≤ 0, an analogous property holds for the maximum value of u on

F and on
◦
F replacing u ∧ 0 by u+. Moreover, the result is more accurate for solutions of the

equation Lq(u) = 0.

Corollary 4.9 Let F be a proper subset of V and u ∈ C(F̄ ) such that Lq(u) = 0 on F . Then,

max
◦
F

{ |u|
σ

}
≤ max

δ(F c)

{ |u|
σ

}
≤ max

δ(F )

{ |u|
σ

}
.

Proof. Since |u| = −u ∨ u and u and −u are both subsolutions, then applying Lemma 4.7 we
get that Lq(|u|) ≤ 0 on F . Since |u| ∈ C+(V ), the result follows from Hopf’s maximum principle.

In the following result we show that the minimum principle implies the monotonicity of Lq.
Moreover, we can also precise the last conclusion of Corollary 4.3.

Proposition 4.10 Consider u ∈ C(F̄ ) such that Lq(u) ≥ 0 on F . If u(x) ≥ 0 for all x ∈ δ(F ),
then u ∈ C+(F̄ ). In addition, if H is a connected component of F , either u = 0 or u > 0 on H.
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Proof. The case F = V follows straightforwardly. So, we suppose that F is a proper subset.
Applying Corollary 4.8, we get that u ∈ C+(F ) and therefore u ∈ C+(F̄ ). Moreover when H is
a connected component of F , if u(x∗) = 0 for some x∗ ∈ H, then u = 0 on H by applying the
Hopf’s minimum principle to H̄.

We conclude this section obtaining a generalization of the well-known Condenser principle,
that in its classical version is closely related to the theory of Dirichlet Forms. The case when σ
is a constant function, that is when q ∈ C+(V ), was studied in [5].

Proposition 4.11 (Condenser principle) Let F be a proper subset of V , {A,B} a partition of
δ(F ) and u ∈ C(F̄ ) the unique solution of the following boundary value problem

Lq(u)(x) = 0, if x ∈ F,

u(x) = σ(x), if x ∈ A,

u(x) = 0, if x ∈ B.





Then, 0 ≤ u ≤ σ on V , Lq(u) ≥ 0 on A and Lq(u) ≤ 0 on B. Moreover, if H is a connected
component of F , then u > 0 on H when δ(H) ∩A 6= ∅, u = 0 on H when δ(H) ∩A = ∅, u < σ
on H when either δ(H)∩B 6= ∅ or q 6= qσ on H and u = σ on H when δ(H)∩B = ∅ and q = qσ

on H, simultaneously.

Proof. When A = ∅ necessarily u = 0 since F c 6= ∅, and then the result follows. Suppose
now that A 6= ∅ and consider f = −Lq(σ|A)|F . Then, u = v + σ|A where v ∈ C(F ) is the

unique solution of the equation Lq(v) = f on F . Since for all x ∈ F , f(x) =
∫

A
c(x, y) σ(y) dy,

it follows that f ∈ C+(F ) and hence v ∈ C+(F ), which implies that u ≥ 0. On the other
hand, consider w = σ − u. Then, w ≥ 0 on F c, Lq(w) = (q − qσ) σ ≥ 0 on F and hence

u ≤ σ. On the other hand, we have Lq(u)(x) = −
∫

V
c(x, y)u(y) dy ≤ 0, for all x ∈ B, whereas

Lq(u)(x) =
∫

V
c(x, y) (σ(y)− u(y)) dy + (q(x)− qσ(x))σ(x) ≥ 0 for all x ∈ A, by equality (1).

Finally, if H is a connected component of F , then applying the above proposition it follows
that either u = 0 or u > 0 on H. If u = 0 on H, then for all x ∈ H we get that Lq(u)(x) =

−
∫

A
c(x, y) σ(y) dy, which implies that necessarily δ(H)∩A = ∅. That u < σ on H when either

δ(H)∩B 6= ∅ or q 6= qσ on H, is deduced in the same way considering now the function v = σ−u.

Under the hypotheses of the above proposition, F̄ is called condenser with positive and
negative plates A and B, respectively and the boundary value problem is called the condenser
problem corresponding to F̄ . Moreover, we say that the condenser is connected if F is a connected
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subset. Observe that in the conditions of the condenser principle, when x ∈ A, then Lq(u)(x) = 0
iff q(x) = qσ(x), d(x,B) > 1 and u = σ on {y ∈ F : y ∼ x}, whereas when x ∈ B, then
Lq(u)(x) = 0 iff d(A, x) > 1 and u = 0 on {y ∈ F : y ∼ x}. Also, it is true that if H is a
connected component of F , then Lq(u) > 0 on δ(H) ∩A when δ(H) ∩B 6= ∅ and Lq(u) < 0 on
δ(H) ∩B when δ(H) ∩A 6= ∅.

Corollary 4.12 If F̄ is a connected condenser and u is the solution of the corresponding con-
denser problem, then 0 < u < σ on F , Lq(u) > 0 on the positive plate and Lq(u) < 0 on the
negative plate.

Next we introduce a concept that is closely related with the condenser problem in the case
q = qσ, namely the effective resistance between two non empty subsets. Fixed σ ∈ C∗n(V ),
consider A,B two disjoint nonempty subsets of V and u the unique solution of the boundary
value problem

Lqσ(u)(x) = 0, if x ∈ V \ {A, B},
u(x) = σ(x), if x ∈ A,

u(x) = 0, if x ∈ B.





Observe that when δ(V \ {A,B}) = A ∪ B, then V is a condenser with plates A and B. In
this case, the positive plate, A, is called source and the negative plate, B is called the sink. In
any case, the same arguments that in the proof of the condenser principle show that 0 ≤ u ≤ σ
on V , Lqσ(u) ≥ 0 on A and Lqσ(u) ≤ 0 on B. Moreover, if H is a connected component of
V \ {A, B}, then u > 0 on H when δ(H) ∩ A 6= ∅, u = 0 on H when δ(H) ∩ A = ∅, u < σ on
H when δ(H) ∩ B 6= ∅ and u = σ on H when δ(H) ∩ B 6= ∅. In addition, when x ∈ A, then
Lqσ(u)(x) = 0 iff d(x, B) > 1 and u = σ on {y ∈ V \ {A,B} : y ∼ x}, whereas when x ∈ B, then
Lqσ(u)(x) = 0 iff d(A, x) > 1 and u = 0 on {y ∈ V \ {A,B} : y ∼ x}. It is also true that if H
is a connected component of V \ {A,B}, then Lqσ(u) > 0 on δ(H) ∩A when δ(H) ∩B 6= ∅ and
Lqσ(u) < 0 on δ(H) ∩B when δ(H) ∩A 6= ∅.

The effective conductance between A,B, with respect to σ, is defined as the value Cσ(A,B) =
Eqσ(u, u). Clearly, Cσ(A,B) > 0, otherwise, u = a σ and hence u can not verify u = 0 on B and
u = σ on A simultaneously. The effective resistance between A and B, w.r.t. σ, is defined as the
value Rσ(A,B) = Cσ(A,B)−1. The effective conductance, and hence the effective resistance, is
a symmetric set function, that is, Cσ(A,B) = Cσ(B, A) since Eqσ(u, u) = Eqσ(σ − u, σ − u). So,
it is irrelevant which set acts as the source and which set acts as the sink.

On the other hand, applying the Dirichlet principle we obtain that

Cσ(A,B) = min
{
Eqσ(v, v) : v = σ on A and v = 0 on B

}

and moreover, Cσ(A,B) =
∫

V
uLqσ(u) dx =

∫

A
σLqσ(u) dx = −

∫

B
σLqσ(u) dx.
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The special case q = 0, that is when σ = 1, and both A and B consist of a single vertex has
been extensively treated in the literature. Now, defining Rσ: V × V −→ (0, +∞) as Rσ(x, y) =
Rσ({x}, {y}) when x 6= y and Rσ(x, x) = 0, it follows that Rσ is a symmetric function. Moreover,
if u is the unique solution of the boundary value problem Lqσ(u) = 0 on V \ {x, y}, u(x) = σ(x)
and u(y) = 0, then 1 = σ(x) Rσ(x, y)Lqσ(u)(x) and hence Rσ(x, y)Lqσ(u) = 1

σ (εx − εy) on V .
We conclude this section with a generalization of a classical result, see for instance [7].

Proposition 4.13 Consider x, y ∈ V and v ∈ C(V ) any solution of the Poisson equation

Lqσ(v) =
1
σ

(εx − εy). Then Rσ(x, y) = Eqσ(v, v) =
v(x)
σ(x)

− v(y)
σ(y)

.

Proof. Clearly, v = Rσ(x, y) u + a σ with a ∈ IR, where u satisfies Lqσ(u) = 0 on V \ {x, y},
u(x) = σ(x) and u(y) = 0. This implies that Eqσ(v, v) = Rσ(x, y)2Eqσ(u, u) = Rσ(x, y). More-

over, since u(y) = 0 and u(x) = σ(x), necessarily a = v(y)
σ(y) and hence Rσ(x, y) =

v(x)
σ(x)

− v(y)
σ(y)

.

5 Green and Poisson kernels associated with Schrödinger Op-
erators

In this section we assume that hypothesis H1 is always satisfied and then, we build the kernels
associated with the inverse operators which correspond either to a semihomogeneous Dirichlet
problem or to a Poisson equation. In the same way that in the continuous case, such operators
will be called Green operators and we will show that they are integral operators. In addition,
for any proper subset, we will also consider the kernel associated with the inverse operator of
the boundary value problem in which the equation is homogeneous and the boundary data is
prescribed. Such integral operator will be called Poisson operator.

Here, we study the properties of the above-mentioned integral operators. Firstly we establish
the basic notions about integral operators and their associated kernels. Then, we prove the
existence and uniqueness of Green and Poisson operators for each proper subset F , we show
some of their properties and we build the associated Green or Poisson kernels. On the other
hand, under hypothesis H2 we make an analogous study for the Green operator for V . Moreover,
we extend this work to the singular case, that is, when F = V and q = qσ simultaneously and
we construct all the Green operators that represent generalized inverses of the problem. In
particular, we concentrate on the so-called orthogonal Green operator. Finally, we extend the
results on monotonicity of Green kernels with respect to monotone variations of the 0-order term
proved in [20] by M. Yamasaki.

We start introducing some concepts about kernels and integral operators. We remark that
if F1 and F2 are non empty subsets, C(F1×F2) denotes the set of functions K ∈ C(V × V ) such
that K(x, y) = 0 if (x, y) /∈ F1 × F2.
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If F is a non empty subset of V, any function K ∈ C(F × F ) will be called a kernel on F .
Of course, if F ⊂ H, then each kernel on F is also a kernel on H.

If K is a kernel on F , for each x, y ∈ F we denote by Kx and Ky the functions of C(F )
defined by Kx(y) = Ky(x) = K(x, y). Moreover, when F is a proper subset and K is a kernel on

F̄ , for each x ∈ δ(F ) and each y ∈ F̄ , we denote by
(

∂K

∂n

)
(x, y) the value

(
∂Ky

∂n

)
(x), whereas

for each x ∈ F̄ and each y ∈ δ(F ) we denote by

(
∂K

∂ny

)
(x, y) the value

(
∂Kx

∂n

)
(y).

If K is a kernel on F , we define the integral operator associated with K as the endomorphism

K: C(F ) −→ C(F ) that assigns to each f ∈ C(F ), the function K(f)(x) =
∫

F
K(x, y) f(y) dy for

all x ∈ V .

The relation between kernels, integral operators and endomorphisms of C(F ) is given by
the following result. Its first part can be seen as a discrete version of the Schwartz’s Kernel
Theorem, because the natural identification between C(F ) and its dual space.

Proposition 5.1 (Kernel Theorem) Each endomorphism of C(F ) is an integral operator asso-
ciated with a kernel on F which is uniquely determined. Moreover, if K is an integral operator
on F , K is its associated kernel and A is a non empty subset of F , then the following state-
ments hold: K is self-adjoint iff K is symmetric, that is K(x, y) = K(y, x) for all x, y ∈ F ,
ImgK ⊂ C(A) iff K ∈ C(A× F ) and C(F \A) ⊂ kerK iff K ∈ C(F ×A).

Proof. It is clear that ifK is the integral operator associated with the kernel K then Ky = K(εy)
for all y ∈ F . Conversely, if K is an endomorphism of C(F ) and we consider the function
K: F × F −→ IR given by K(x, y) = K(εy)(x) for each x, y ∈ F , then K is a kernel on F and K
is the integral operator associated with it. In addition, if K is a self-adjoint operator, then for
all x, y ∈ F it must be satisfied that

K(x, y) = K(εy)(x) =
∫

F
εxK(εy) dz =

∫

F
εy K(εx) dz = K(εx)(y) = K(y, x)

and hence, K is symmetric. Conversely, if K is symmetric, then for all f, g ∈ C(F ) it is verified
that

∫

F
gK(f)dx =

∫

F

∫

F
g(x)K(x, y)f(y)dydx =

∫

F

∫

F
f(y)K(y, x)g(x)dxdy =

∫

F
fK(g)dy

and hence K is self-adjoint.

On the other hand, let K be an endomorphism of C(F ), K its associated kernel and A a non

empty subset of F . If K ∈ C(A×F ), then for each f ∈ C(F ), K(f)(x) =
∫

F
K(x, y) f(y) dy = 0,

for all x /∈ A and hence K(f) ∈ C(A). Conversely, if ImgK ⊂ C(A), then K(x, y) = K(εy)(x) = 0
for all y ∈ F and x /∈ A which implies that K ∈ C(A× F ).
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Finally, if K ∈ C(F ×A), then K(f)(x) =
∫

A
K(x, y) f(y) dy for all x ∈ F and f ∈ C(F ) and

hence K(f) = 0 when f ∈ C(F \A). Conversely, if C(F \A) ⊂ kerK, then K(x, y) = K(εy)(x) = 0
for all x ∈ F and y /∈ A which implies that K ∈ C(F ×A).

Observe that since C(A) ⊂ C(F ) when A ⊂ F , the Kernel Theorem implies that each linear
operator K: C(F ) −→ C(A) is identified with an integral operator whose kernel K satisfies that
K ∈ C(A×F ). In addition, if K: C(A) −→ C(F ) is a linear operator, then defining K(f) = K(f|A)
for all f ∈ C(F ), the operator has been extended to an endomorphism of C(F ), that we continue
calling K, such that C(F \ A) ⊂ kerK. Therefore K is an integral operator whose kernel K
satisfies that K ∈ C(F ×A).

Now we are ready to introduce the concepts of Green and Poisson operators and kernels.
Firstly, we consider the case in which F is a proper subset of V . Recall that in this situation,
hypothesis H1 implies that for each f ∈ C(F ) and each g ∈ C(δ(F )) there exists a unique function
u ∈ C(F̄ ) such that Lq(u) = f on F and u = g on δ(F ). In particular, for each f ∈ C(F ) there
exists a unique function u ∈ C(F ) such that Lq(u) = f on F , whereas for each g ∈ C(δ(F )),
there exists a unique function u ∈ C(F̄ ) such that Lq(u) = 0 on F and u = g on δ(F ).

Definition 5.2 Let F be a proper subset of V . We call the endomorphism GF of C(F ) that
assigns to each f ∈ C(F ) the unique function GF (f) ∈ C(F ) such that Lq(GF (f)) = f on F the
Green operator for F .

We call the linear operator PF : C(δ(F )) −→ C(F̄ ) that assigns to each g ∈ C(δ(F )) the
unique function PF (g) ∈ C(F̄ ) such that Lq(PF (g)) = 0 on F and PF (g) = g on δ(F ) the
Poisson operator for F .

Of course, the Green operator for F is an isomorphism of C(F ) whose inverse is Lq. In the
following result we investigate formal properties of the Green and Poisson operators.

Proposition 5.3 If F is a proper subset of V , then the Green and the Poisson operators for F
are formally self-adjoint in the sense that

∫

F
g GF (f) dy =

∫

F
f GF (g) dy, for all f, g ∈ C(F ),

∫

δ(F )
gPF (f) dy =

∫

δ(F )
f PF (g) dy, for all f, g ∈ C(δ(F )).

In addition, if NF : C(δ(F )) −→ C(F ) is the linear operator given by NF (g) = L(g)|F then
PF = I − GF ◦ N F , where I denotes the identity operator on C(δ(F )).

Proof. Given f, g ∈ C(F ), consider u = GF (f) and v = GF (g). Then u, v ∈ C(F ) and Lq(u) = f
and Lq(v) = g on F . In addition since [P] is formally self-adjoint we get that

∫

F
g GF (f) dy =

∫

F
uLq(v) dy =

∫

F
vLq(u) dy =

∫

F
f GF (g) dy.
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On the other hand, PF is self-adjoint since it coincides with the identity operator on C(δ(F )).
Finally, if g ∈ C(δ(F )) and we consider u = PF (g), then u is the unique solution of the boundary
value problem Lq(u) = 0 on F and u = g on δ(F ). This problem is equivalent to the semihomo-
geneous one Lq(v) = −Lq(g) on F with v ∈ C(F ) and hence u = g − GF (Lq(g)|F ). The result
follows taking into account that Lq(g)|F = L(g)|F since supp(g) ⊂ δ(F ).

By the Kernel Theorem and the subsequent remark, the Green and Poisson operators for F
are integral operators on F and F̄ , respectively, so we can introduce the following concepts.

Definition 5.4 If F is a proper subset of V , we call the Green and Poisson kernel for F the
kernels associated with the Green and Poisson operators for F , respectively. They will be denoted
by GF and PF .

It is clear that the last conclusion of the Kernels Theorem implies that GF ∈ C(F × F ) and
PF ∈ C(F̄ × δ(F )). Moreover, if f ∈ C(F ) and g ∈ C(δ(F )), then the functions given by

u(x) =
∫

F
GF (x, y) f(y) dy and v(x) =

∫

δ(F )
PF (x, y) g(y) dy, x ∈ F̄ ,

are the solutions of the semihomogeneous boundary value problems Lq(u) = f on F , u = 0 on
δ(F ) and Lq(v) = 0 on F and v = g on δ(F ), respectively. In particular, for each g ∈ C(δ(F ))

we have that g(x) =
∫

δ(F )
PF (x, y) g(y) dy for all x ∈ δ(F ). So, 1 =

∫

δ(F )
PF (x, y) dy for all

x ∈ δ(F ) and σ(x) =
∫

δ(F )
PF (x, y) σ(y) dy for all x ∈ F̄ when q = qσ.

Now, the relation between an integral operator and its associated kernel enables us to char-
acterize the Green and Poisson kernels as solutions of suitable boundary value problems.

Proposition 5.5 Let F be a proper subset of V and GF ∈ C(F × F ) and PF ∈ C(F̄ × δ(F ))
the Green and Poisson kernels for F . Then for all y ∈ F , the function GF

y is characterized by
Lq(GF

y ) = εy on F and for all y ∈ δ(F ), the function PF
y is characterized by Lq(PF

y ) = 0 on F

and PF
y = εy on δ(F ).

Moreover, GF is symmetric on F , PF (x, y) = εy(x)−
(

∂GF

∂ny

)
(x, y) for all x ∈ F̄ and y ∈

δ(F ) and
∂PF

∂n
is symmetric on δ(F ), that is

(
∂PF

∂n

)
(x, y) =

(
∂PF

∂n

)
(y, x) for all x, y ∈ δ(F ).

Proof. The symmetry of GF follows directly from the Kernel Theorem. Moreover, for each
y ∈ F , GF

y = GF (εy) and hence Lq(GF
y ) = εy. In the same way if y ∈ δ(F ), then PF

y = PF (εy)
is the unique solution of the boundary value problem Lq(PF

y ) = 0 on F and PF
y = εy on δ(F ).
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Fixed x, y ∈ δ(F ) if we consider the functions u = PF
y and v = PF

x , then Lq(u) = Lq(v) = 0 on
F and applying the Second Green Identity

(
∂PF

∂n

)
(x, y) =

∫

δ(F )
v

∂u

∂n
dz =

∫

δ(F )
u

∂v

∂n
dz =

(
∂PF

∂n

)
(y, x)

and hence
∂PF

∂n
is symmetric on δ(F ).

On the other hand, the last part of Proposition 5.3 implies that PF
y = εy −GF (L(εy)|F ), for

all y ∈ δ(F ). Since for all x ∈ F , L(εy)(x) =
∫

V
c(x, z) (εy(x)− εy(z)) dz = −c(x, y), we get that

for all x ∈ F , and all y ∈ δ(F ),

GF (L(εy)|F )(x) = −
∫

F
GF (x, z) c(z, y) dz

=
∫

F
c(y, z)

(
GF (x, y)−GF (x, z)

)
dz =

(
∂GF

∂ny

)
(x, y).

The relation between the Green and Poisson kernels given in the above proposition was
obtained in [4], for the case in which q is non negative by using the same technique.

It will be useful to extend the Poisson operator for F to the linear operator KF : C(F c) −→
C(V ) that assigns to any g ∈ C(F c) the unique solution of the boundary value problem Lq(u) = 0
on F and u = g on F c. Of course, KF is an integral operator which kernel satisfies KF ∈
C(V × F c). Now for all y ∈ F c, KF

y is characterized by equations Lq(KF
y ) = 0 on F and

KF
y = εy on F c. Therefore, KF

y = PF
y for all y ∈ δ(F ) and the solution of the previous

boundary value problem is given by

u(x) =
∫

F c
KF (x, y) g(y) dy = g(x) 1

Ext(F )
(x) +

∫

δ(F )
PF (x, y) g(y) dy, for all x ∈ V.

In the sequel we will identify KF and KF , with the Poisson operator and the Poisson kernel for
F , and we will use the notations PF and PF for them, respectively.

Next, we define the concept of Green operator and Green kernel when F = V both in the
case q 6= qσ and q = qσ. For this, we will consider the vectorial subspace V = ker(Lq) and π the
orthogonal projection on it. Of course, V is trivial and hence π = 0, when q 6= qσ. Otherwise,

V is the subspace generated by σ, and hence π(f) =
σ

||σ||2
2

∫

V
σ f dx. Recall that in any case,

Lq is an isomorphism of V⊥. Moreover, for each f ∈ C(V ) there exists u ∈ C(V ) such that
Lq(u) = f − π(f) and then u + V is the set of all functions such that Lq(v) = f − π(f).

Definition 5.6 We call any endomorphism G̃ of C(V ) that assigns to each f ∈ C(V ) a function
G̃(f) ∈ C(V ) verifying that Lq(G̃(f)) = f − π(f) a Green operator for V . Moreover, we say that
G̃ is orthogonal if G̃(f) ∈ V⊥, for all f ∈ C(V ).
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We call the kernels associated with Green operators for V the Green kernels for V . They
will be generically denoted by G̃.

It is clear that in any case there exists a unique orthogonal Green operator for V . It will
be denoted by G and it is an isomorphism of V⊥, inverse of Lq. In particular, when q 6= qσ

there exists a unique Green operator for V and therefore it coincides with the orthogonal Green
operator for V . Since in this case V = {0}, the Green operator is an isomorphism of C(V ). The
kernel associated with the unique orthogonal Green operator for V will be called the orthogonal
Green kernel for V and will be denoted by G.

Proposition 5.7 If G̃ is any Green operator for V , then
∫

V
g G̃(f) dx =

∫

V
f G̃(g) dx for all

f, g ∈ V⊥. Moreover, the orthogonal Green operator for V is self-adjoint, that is
∫

V
g G(f) dx =

∫

V
f G(g) dx for all f, g ∈ C(V ).

Proof. Let f, g ∈ V⊥ and consider u = G̃(f) and v = G̃(g). Then Lq(u) = f , Lq(v) = g and
since Lq is self-adjoint, then

∫

V
g G̃(f) dx =

∫

V
uLq(v) dx =

∫

V
vLq(u) dx =

∫

V
f G̃(g) dx.

Consider now f, g ∈ C(V ), u = G(f) and v = G(g). Then u, v ∈ V⊥, Lq(u) = f − π(f),
Lq(v) = g − π(g) and hence

∫

V
g G(f) dx =

∫

V
(g − π(g))u dx =

∫

V
uLq(v) dx

=
∫

V
vLq(u) dx =

∫

V
(f − π(f)) v dx =

∫

V
f G(g) dx.

If G̃ is a Green kernel for V , then G̃ ∈ C(V × V ) and if f ∈ C(V ) then the function given by

u(x) =
∫

V
G̃(x, y) f(y) dy for all x ∈ V is a solution of the Poisson equation Lq(u) = f − π(f).

In addition, if G̃ = G, then u is the unique solution in V⊥. The relation between an integral
operator and its associated kernel enables us again to characterize the Green kernels for V as
solutions of suitable boundary value problems.

Proposition 5.8 For all y ∈ V , the function Gy is characterized by equations Lq(Gy) = εy −
a σ(y) σ and a

∫

V
σ Gy dx = 0, where a = 0 if q 6= qσ and a = ||σ||−2

2
if q = qσ. Moreover, G is

symmetric and G̃ is a Green kernel for V iff there exist τ ∈ C(V ) such that G̃ = G + σ ⊗ τ . In
addition, G̃ is symmetric iff τ is a multiple of σ, that is iff G̃ = G + b σ ⊗ σ, where b ∈ IR.
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Proof. In any case, for all y ∈ V , G̃y = G̃(εy) and hence Lq(G̃y) = εy − π(εy). When q 6= qσ,

then π = 0, whereas when q = qσ, then π(εy) =
σ

||σ||2
2

∫

V
σ εy dx =

σ(y)
||σ||2

2

σ. When G̃ = G, it

must be also satisfied that G(εy) ∈ V⊥, that is
∫

V
σ Gy dx = 0 for all y ∈ V . Moreover G is

symmetric since G is self-adjoint.

Suppose that q = qσ and consider G̃ any Green kernel for V . Then, for all f ∈ C(V )∫

V

(
G̃(x, y) − G(x, y)

)
f(y) dy ∈ V. In particular, taking f = εz for each z ∈ V , we get that

there exists τ(z) ∈ IR such that G̃(x, z) = G(x, z)+τ(z) σ(x) for all x ∈ V . Since G is symmetric,
it results that G̃ is symmetric iff σ(x) τ(y) = σ(y) τ(x) for all x, y ∈ V , that is iff τ is a multiple
of σ.

Now, we are going to establish new relations between Green and Poisson kernels. With this
aim, if F is a nonempty subset, it will be useful to consider for each y ∈ F̄ the set Fy defined as
follows:

(1) If F is a proper subset and y ∈ δ(F ), Fy is the set of vertices of F that are in the connected
component of F ∪ {y} containing y.

(2) If y ∈ F , Fy is the connected component of F containing y.

Observe that in both cases, (1) and (2), δ(Fy) ⊂ δ(F ) for all y ∈ F̄ . Moreover, in case (1), Fy

is not necessarily a connected set but y ∈ δ(H), for any connected component H of Fy. On the
other hand, when F is connected, then Fy = F for all y ∈ F̄ .

Proposition 5.9 For all y ∈ δ(F ) it is verified that 0 < PF
y ≤ σ

σ(y)
on Fy, PF

y = 0 on

F \ Fy, Lq(PF
y ) < 0 on δ(Fy) \ {y} and Lq(PF

y )(y) > 0, except when F = V \ {y} and q = qσ

simultaneously, in which case PF
y =

σ

σ(y)
and hence Lq(PF

y )(y) = 0. In addition, if H is a

connected component of Fy and either |δ(H)| > 1 or q 6= qσ on H, then PF
y <

σ

σ(y)
on H,

whereas if δ(H) = {y} and q = qσ on H simultaneously, then PF
y =

σ

σ(y)
on H.

Proof. Let y ∈ δ(F ) and consider the sets A = {y} and B = δ(F ) \ {y} and the function
u = σ(y) PF

y . Then u is the unique solution of the condenser problem for F̄ with plates A and
B. Therefore, 0 < u ≤ σ on Fy, u = 0 on F \ Fy, Lq(u)(y) ≥ 0, Lq(u) ≤ 0 on δ(F ) \ {y} and
Lq(u) < 0 on δ(Fy) \ {y} since δ(H) ∩ A 6= ∅ for any connected component of Fy. Moreover,
δ(H) ∩B 6= ∅ iff |δ(H)| > 1, so the last conclusion follows from the condenser principle.

Finally, since Lq(u)(y) σ(y) =
∫

V
Lq(u) u dx = Eq(u, u), we get that Lq(u)(y) = 0 iff either

u = 0 when q 6= qσ or u = α σ when q = qσ. Since u(y) = σ(y) > 0 and u = 0 on F c \ {y}, it
results that Lq(u)(y) > 0 except when q = qσ and F = V \ {y} simultaneously.

24



For the sake of completeness, the Green kernel for V will be denoted by GV in the following
proposition.

Proposition 5.10 Let F be a non empty subset of V and suppose that hypotheses H1 and

H2 are in force. Then, for all y ∈ F it is verified that GF
y (y) > 0, P

F\{y}
y =

GF
y

GF
y (y)

and

0 ≤ GF
y ≤ GF

y (y)
σ

σ(y)
on F . Moreover, GF

y =
σ

aσ(y)
iff F = V and q = a εy + qσ with a > 0,

simultaneously. Otherwise, GF
y = 0 on F \ Fy and 0 < GF

y < GF
y (y)

σ

σ(y)
on Fy \ {y}.

Proof. From the characterization of GF
y and Corollary 4.3, we obtain that 0 ≤ GF

y on F and
moreover, GF

y (y) > 0, for all y ∈ F .

For fixed y ∈ F , the function u =
1

GF
y (y)

GF
y satisfies that u(y) = 1, u = 0 on δ(F ) and

Lq(u) = εy on F , which implies that Lq(u) = 0 on F \ {y}, u = 0 on δ(F \ {y}) \ {y} and
u(y) = 1 and therefore u = P

F\{y}
y .

Finally, keeping in mind that if H = F \ {y}, then δ(Hy) = {y} iff F = V , the rest of claims
are deduced directly from the properties of the Poisson kernel given in the above proposition.

Corollary 5.11 Consider F a non empty and connected subset and suppose that hypotheses H1

and H2 are in force. Then, for all y ∈ F , GF
y is strictly positive,

1
σ

GF
y takes its maximum value

at {y} and such a maximum is strict except when F = V and q = qσ on V \ {y} simultaneously,

in which case
1
σ

GF is constant.

We finish this section by proving the announced monotonicity properties of Green kernels
w.r.t. to the 0-order term, which generalize those obtained in [20]. Of course, these properties
can be easily reformulated in terms of Poisson kernels since both types of kernels are related by
the expressions given in Proposition 5.10.

Proposition 5.12 Let F be a non empty subset of V and suppose that hypotheses H1 and H2

hold. Then
∫

V
GF

y q dx ≤ 1 for all y ∈ F , with strict inequality when F 6= V . In addition if

{qk}∞k=1 satisfy that qk ↓ q (respectively qk ↑ q with q1 ≥ qσ and q1 6= qσ when F = V ) and for
all k ∈ IN∗, GF

k denotes the Green kernel for F associated with the operator Lqk
, then GF

k ↑ GF

(respectively GF
k ↓ GF ).
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Proof. Fixed y ∈ F , if v = GF
y , then v ∈ C+(F ). Therefore, if F is a proper subset then

Lq(v) ≤ 0 on F c and necessarily Lq(v)(x) < 0 for some x ∈ δ(F ). On the other hand,
∫

F
GF

y q dx =
∫

F
(εy − L(v)) dx = 1−

∫

V
L(v) dx +

∫

δ(F )
L(v) dx = 1 +

∫

δ(F )
L(v) dx

and the first claim follows observing that the value of
∫

δ(F )
Lq(v) dx is zero when F = V and

strictly negative otherwise.

Now, for each k ∈ IN∗ consider vk = GF
ky and take u = GF

x for fixed x ∈ F . Then applying
the Second Green Identity, we obtain that

vk(x) =
∫

F
Lq(u) vk dz =

∫

F
uLq(vk) dz =

∫

F
uL(vk) dz +

∫

F
q u vk dz,

u(y) =
∫

F
Lqk

(vk) u dz =
∫

F
L(vk) u dz +

∫

F
qk vk u dz.

Taking into account that u(y) = GF (y, x) = GF (x, y) = v(x), from the above identities we

obtain that v(x)− vk(x) =
∫

V
(qk − q) vk u dz.

When qk ↓ q, Corollary 4.2 assures that v ≥ vk+1 ≥ vk. Moreover, if α ≥ 0 is such that

GF ≤ α, then u, v ≤ α and hence 0 ≤ v(x)−vk(x) ≤ α2
∫

V
(qk− q) dz, which implies that vk ↑ v.

When qk ↑ q, then hypothesis q1 ≥ qσ with q1 6= qσ if F = V , ensures that GF
k makes sense

for all k. Moreover applying again Corollary 4.2 we obtain that v ≤ vk ≤ vk−1. Therefore, if

α ≥ 0 is such that GF
1 ≤ α, then 0 ≤ vk(x)− v(x) ≤ α2

∫

V
(q− qk) dz, which implies vk ↓ v.

The first claim in the above proposition is also true for any Green kernel when F = V and
q = qσ simultaneously, since in this case

∫

V
G̃y qσ dx =

∫

V

(
εy − σ(y)

||σ||2
2

σ

)
dx−

∫

V
L(G̃y) dx = 1− σ(y)

||σ||2
2

∫

V
σ dx < 1.

6 The kernel associated to a Schrödinger operator

As we have shown the discrete Schrödinger operators are difference operators verifying analogous
properties to those satisfied by self-adjoint second order elliptic operators. In particular, they
have associated quadratic forms and resolvents or Green kernels. The aim of this section is
to treat the discrete Schrödinger operators from another point of view, which does not seem
to have a continuous counterpart. Since any Schrödinger operator, Lq, is an endomorphism of
C(V ), from the Kernel Theorem it can be seen as an integral operator whose associated kernel
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is given by Lq(x, y) = Lq(εy)(x) for all x, y ∈ V . Therefore, Lq(x, y) = −c(x, y) if x 6= y and
Lq(x, x) = k(x) + q(x) and hence

Lq(u)(x) =
∫

V
Lq(x, y) u(y) dy for all u ∈ C(V ).

By considering the kernel Lq we build a Potential Theory with respect to it. Of course the
kernel Lq must satisfy some properties that justify this new point of view. For that, we assume
again that hypothesis H1 holds. In particular, the principles satisfied by Lq will allow to build
the so-called equilibrium measures. The fundamental result of this section consists of obtaining
systematically explicit expressions for the Green and Poisson kernels by means of equilibrium
measures. Therefore, the obtained results appear as a generalization of those given by authors
in [4, 5] when q ∈ C+(V ).

To develop a Potential Theory w.r.t. the kernel Lq, we next introduce some concepts and
notations within this framework. Here we will make an extensive use of the natural identification
between functions and Radon measures on V , since the underlying space, V , is finite. So, for

each u ∈ C(V ) we call mass of u the value ||u|| =
∫

V
u dx and for each non empty subset F ,

we denote by M1(F ) = {u ∈ C+(F ) : ||u|| = 1}. In addition, we call potential and energy of u
(w.r.t. Lq) the function and the value given respectively by

Lq(u)(x) =
∫

V
Lq(x, y) u(y) dy and

∫

V
Lq(u) u dx.

Clearly, for each u ∈ C(V ), the energy of u coincides with the value Eq(u, u). Now we investigate
on the properties satisfied by the potentials and by the energy w.r.t. the kernel Lq.

Proposition 6.1 (Energy principle) The energy is an strictly convex functional on M1(V ).

Proof. Observe that the verification of the energy principle is equivalent to the property Eq(u−
v, u−v) ≥ 0 for each u, v ∈M1(V ), with equality iff u = v, that is, it is equivalent to the positive
definiteness of Eq on the subspace of functions with null mass.

From Corollary 3.4, Eq is positive semidefinite on C(V ) and positive definite when q 6= qσ.
Moreover, when q = qσ, Eq(w, w) = 0 iff w = a σ with a ∈ IR and hence a = 0 when ||w|| = 0.

By applying Corollary 4.3 to the case f = 1F , we get the following result.

Proposition 6.2 (Equilibrium principle) Let F be a non empty subset of V and suppose that
hypothesis H2 is also verified. Then, there exists a unique νF ∈ C+(F ) such that Lq(νF ) = 1F

on F . In addition, supp(νF ) = F .
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Under the hypotheses of the above proposition, νF will be called the equilibrium measure for
F (w.r.t. Lq) and it is clear that Eq(νF , νF ) = ||νF ||. Observe that each proper subset of V
has an equilibrium measure w.r.t. Lq, whereas V has an equilibrium measure only when q 6= qσ.

Moreover, it is easy to verify that Lq(νF ) = 1F −
(∫

F
c(·, y) νF (y) dy

)
1

δ(F )
for any proper subset

F .

Next, we calculate the equilibrium measure for some simple cases. If F = {x}, then its
equilibrium measure must be a positive multiple of εx. Moreover, since Lq(εx)(x) = k(x) + q(x)
we get that ν{x} = 1

k+q εx. On the other hand, if q 6= qσ, then the equilibrium measure for
V is a positive multiple of σ, say νV = a σ, iff q = qσ + 1

a σ , because Lq(σ) = (q − qσ) σ. In
particular, the equilibrium measure for V is constant iff q is a positive constant and in this case,
νV = 1

q . Other not so elementary examples as the equilibrium measures for proper subsets of
cycles, paths and complete graphs when q = 0, can be found in [3].

We pay special attention at the equilibrium measures for sets with cardinality n− 1 because
they are important in applications. So, for each x ∈ V we will denote by νx the equilibrium
measure for F = V \ {x}. Sometimes, we can determine the explicit value of νx, for instance
this is the case of distance-regular graphs which has been used at the beginning of this paper.
In any case, we have that for all x ∈ V ,

||σ||+
(
Lq(νx)(x)− 1

)
σ(x) =

∫

V
Lq(νx) σ dy =

∫

V
Lq(σ) νx dy =

∫

V
νx σ(q − qσ) dy

and therefore, Lq(νx) = 1 − 1
σ

(∫

V
νx σ(q − qσ) dy + ||σ||

)
εx. In particular, when q = qσ, we

have that Lqσ(νx) = 1− ||σ||
σ εx.

The last property of kernel Lq we analyze here is related to the maximum value of its
potentials. We emphasize that this property must not be confused with the maximum principle
for Lq as an operator (Corollary 4.5).

Proposition 6.3 (Frostman’s maximum principle) For all non-zero u ∈ C+(V ), we have

max
x∈V

{Lq(u)(x)} = max
x∈supp(u)

{Lq(u)(x)}.

Proof. Consider a non-zero u ∈ C+(V ). If x /∈ supp(u) we get that Lq(u)(x) ≤ 0, since u is

non negative. On the other hand, if x∗ ∈ supp(u) is such that
u(x∗)
σ(x∗)

= max
y∈supp(u)

{
u(y)
σ(y)

}
, then

Lq(u)(x∗) ≥ 0 from expression (1) and therefore, the result follows.

In the framework of Potential Theory, the equilibrium principle is often obtained as a conse-
quence of the verification of the energy and the Frostman’s maximum principles (see for instance
[3].) Moreover, both principles can be used to obtain the equilibrium measures from the solution
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of either a quadratic and convex programming problem or of a linear programming problem.
Specifically, we have that

min
u∈M1(F )

{Eq(u, u)} = min
u∈M1(F )

max
x∈F

{Lq(u)(x)} = min
u∈M1(F )

Lq(u)|F ≤ a 1
F

{a}.

If uF is the unique solution of the above problems, then the value capq(F ) = Eq(uF , uF )−1 is
called the Wiener capacity of F (w.r.t. Lq). In addition, the equilibrium measure for F satisfies
νF = capq(F ) uF , which implies that ||νF || = capq(F ). Therefore, if F is a proper subset of
V then 0 < capq(F ) < +∞. On the other hand, if q = qσ, then uV = ||σ||−1σ and hence
capq(V ) = +∞, whereas if q 6= qσ, then capq(V ) < +∞. In particular, when q = qσ + 1

a σ we get
that capq(V ) = a ||σ|| and capq(V ) = n

q when q is a positive constant.

We must note that the Wiener capacity w.r.t. kernel Lq is not the capacity usually associated
with Schrödinger operators, that is the capacity w.r.t, the associated Dirichlet form. There exist
great differences between both types of capacities. For instance, the capacity associated with
Dirichlet forms is subadditive and in fact strongly subadditive, whereas the Wiener capacity is
not subadditive since it is associated with a signed kernel. In contrast, the Wiener capacity w.r.t.
Lq retains geometric information on the subsets of V , in the sense that it takes into account the
adjacency between subsets as the following results show.

Proposition 6.4 Let F ⊂ V and suppose that hypothesis H2 is also verified. If H is a proper
subset of F , then νH ≤ νF . Moreover, if x ∈ H then νH = νF on Fx when Fx ⊂ H and νH < νF

on Fx, otherwise.

Proof. If u = νF − νH , then u ∈ C(F̄ ), Lq(u) = 1 − Lq(νH) ≥ 0 on F and u = 0 on δ(F ).
Therefore, by applying Proposition 4.10 we get that u ≥ 0 on F and for all x ∈ H either u = 0
on Fx or u > 0 on Fx. When Fx ∩ (F \H) 6= ∅, the result follows since u > 0 on F \H. When
Fx ⊂ H, then for each z ∈ Fx we get that c(z, y) = 0 for all y ∈ F \Fx. Therefore, for all z ∈ Fx

Lq(u|Fx
)(z) = Lq(νF )(z)− Lq(νH)(z) +

∫

F\Fx

c(z, y) νF (y) dy −
∫

H\Fx

c(z, y) νH(y) dy = 0,

which implies that u = 0 on Fx.

Corollary 6.5 Let F ⊂ V and suppose that hypothesis H2 is also verified. If F1, F2 is a partition
of F , then νF1 + νF2 ≤ νF and the equality holds iff d(F1, F2) > 1.

Corollary 6.6 The Wiener capacity is an strictly increasing set function. Moreover, if F1, F2

is a partition of F , then capq(F1) + capq(F2) ≤ capq(F ) and the equality holds iff d(F1, F2) > 1.
In particular, for each subset F ,

∑
x∈F

1
k(x)+q(x) ≤ capq(F ) with equality iff no two vertices in the

subset F represent an edge.
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Now, we are going to obtain the expression of the Green and Poisson kernels associated
with the Schrödinger operator Lq by means of equilibrium measures. For the moment and until
otherwise be specified, we suppose that hypotheses H1 and H2 are true and again we denote by
GV the Green kernel for V .

Proposition 6.7 Let F be a non empty subset of V . Then the following properties hold:

i) The Green kernel for F is given by the expression

GF (x, y) = ||νF − νF\{y}||−1νF (y)
(
νF (x)− νF\{y}(x)

)
, for all x, y ∈ F.

ii) If F is a proper subset and it is not simultaneously true that |F | = n− 1 and q = qσ, then
the Poisson kernel for F is given by the expression

PF (x, y) =
(
νF∪{y}(y)

)−1 (
νF∪{y}(x)− νF (x)

)
, for all x, y ∈ V.

Proof. (i) We know that for all y ∈ F , GF
y is characterized by Lq(GF

y ) = εy on F and GF
y = 0

on δ(F ).

Consider now K ∈ C(V × V ) the function given by K(x, y) = νF (x) − νF\{y}(x) for all
x, y ∈ V . Since Ky = Kx = 0 on F c because supp(νF ), supp(νF\{y}) ⊂ F and νF = νF\{y} when
y /∈ F , it follows that K is a kernel on F . Moreover

Lq(Ky)(x) = Lq(νF )(x)− Lq(νF\{y})(x) =





0, if x 6= y,

1− Lq(νF\{y})(y), if x = y

and the value of 1 − Lq(νF−{y})(y) can be obtained by applying the Second Green Identity to
νF\{y} and νF in the following manner

||νF\{y}|| =
∫

V
νF\{y}Lq(νF ) dz =

∫

V
Lq(νF\{y})νF dz = ||νF || − νF (y)

(
1− Lq(νF\{y})(y)

)
.

(ii) Since for all y ∈ F , GF
y (y) = ||νF − νF\{y}||−1νF (y)2, we obtain that

GF
y

GF
y (y)

=
(
νF (y)

)−1(
νF − νF\{y}

)
.

So, for (x, y) ∈ F̄ × δ(F ), the result follows from the relation between PF
y and G

F∪{y}
y given in

Corollary 5.10.

We conclude the proof observing that when y ∈ F , F ∪ {y} = F , which implies that
νF∪{y} = νF , whereas when y ∈ Ext(F ), νF∪{y} = νF + ν{y}. Hence the value of the given

expression for PF
y is 0 when y ∈ F and it is

ν{y}(x)
ν{y}(y)

= εy(x), when y ∈ Ext(F ).
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Observe that the expression for GF given in part (i) of the above proposition implies that
GF

y ≤ νF (y) for all y ∈ F . In addition, this formula for the Green kernel remains true for
x ∈ V , since νF (x) − νF\{y}(x) = 0 when x ∈ F c, but it can not be extended to y ∈ F c,
since ||νF − νF\{y}|| = 0. However, we can give an alternative expression for GF which is valid
for x, y ∈ V . Specifically, from the proof of above proposition and taking into account that

Lq(νF\{y})(y) = −
∫

V
c(y, z) νF\{y}(z) dz ≤ 0, for all y ∈ V , we obtain

GF (x, y) =
(

1 +
∫

V
c(y, z) νF\{y}(z) dz

)−1 (
νF (x)− νF\{y}(x)

)
, for all x, y ∈ V. (4)

We have just proved that for any nonempty subset F , its Green kernel can be expressed
by means of equilibrium measures. Conversely, the equilibrium measure for a subset can be

obtained by means of its Green kernel. Specifically, we have that νF (x) =
∫

F
GF (x, y) dy, for

all x ∈ V and hence capq(F ) =
∫

F×F
GF (x, y) dx dy. This fact, together with the symmetry of

the Green kernel, allows us to deduce monotonicity properties of the equilibrium measures w.r.t.
the 0-order term from those verified by Green kernels given in Proposition 5.12.

Corollary 6.8 Consider F a nonempty subset of V and a sequence {qk}∞k=1 in C(V ) such that
qk ↓ q, (respectively, qk ↑ q with q1 ≥ qσ and q1 6= qσ when F = V ). If for each k ∈ IN∗ we denote
by νF

k the equilibrium measure for F w.r.t. the kernel Lqk
, then νF

k ↑ νF and capqk
(F ) ↑ capq(F )

(respectively, νF
k ↓ νF and capqk

(F ) ↓ capq(F )).

In addition, from the properties of the Green kernels contained in Proposition 5.10, we can
deduce some relations between the equilibrium measures νF and νF\{y} when y ∈ F .

Corollary 6.9 Let F be a non empty set. Then, for all y ∈ F we get that νF\{y} ≤ νF ≤
νF\{y} + νF (y)

σ(y) σ. Moreover, νF−{y} = νF on F \ Fy and νF\{y} < νF < νF\{y} + νF (y)
σ(y) σ on

Fy \ {y}, except when F = V and q − qσ = aεy, a > 0 in which case νV = νy + νV (y)
σ(y) σ. In

particular, if F is connected, then

νF\{y} < νF < νF\{y} +
νF (y)
σ(y)

σ on F \ {y},

except when F = V and q − qσ = aεy, a > 0.

Of course, we can obtain an analogous relation between νF and νF∪{y} for y ∈ δ(F ), considering
the expression for the Poisson kernel obtained in the above proposition. The above corollary
reaffirms that the equilibrium measure contains global information on the connectivity between
vertices of F . So, if we connect or disconnect a single vertex to a fixed connected set, then the
equilibrium measure of the new subset takes at each vertex a different value.
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The expression of the Green kernel for F that appears in the Proposition 6.7 is analogous
to that obtained in [4] for the case in which σ is a constant function, that is, when q ∈ C+(V ).
Moreover, in the mentioned work the equilibrium measures of subsets with cardinality n−1, that
is the measures νx, x ∈ V , allowed us to obtain a formula for the orthogonal Green kernel for V
in the case q = 0. Now, we are concerned with the general singular case, that is when F = V
and q = qσ simultaneously for arbitrary σ ∈ C∗(V ). Our aim is to express all Green kernels for
V , and in particular the orthogonal Green kernel for V by means of equilibrium measures and
the eigenfunction σ.

Proposition 6.10 Suppose that q = qσ and consider for each y ∈ V , uy the unique solution
of the Dirichlet problem Lqσ(u) = σ on V \ {y}. Then, any Green kernel for V is given by the
formula

G̃(x, y) = − 1
||σ||2

2

uy(x) σ(y) + σ(x) τ(y), with τ ∈ C(V )

and hence G̃y <
σ

σ(y)
G̃y(y) on V \ {y}. In addition, the orthogonal Green kernel for V is given

by the expression

G(x, y) =
σ(y)
||σ||4

2

(
||σ uy||σ(x)− ||σ||2

2
uy(x)

)
, for all x, y ∈ V

and hence any symmetric Green kernel for V is given by the expression

G̃(x, y) =
(b + ||σ uy||)

||σ||4
2

σ(x) σ(y)− 1
||σ||2

2

uy(x) σ(y), b ∈ IR, for all x, y ∈ V.

Proof. By Proposition 5.8, if G̃ is a Green kernel for V , then for all y ∈ V , G̃y must satisfy

that Lqσ(G̃y) = εy − σ(y)
||σ||2

2

σ, for all y ∈ V .

Given y ∈ V consider now uy the unique solution of the Dirichlet problem Lqσ(u) = σ on
V \ {y} and u(y) = 0. Then, uy ∈ C∗(V \ {y}) from Corollary 4.3 and applying the Second
Green identity we obtain that

0 =
∫

V
uy Lqσ(σ) dx =

∫

V
σLqσ(uy) dx = Lqσ(uy)(y) σ(y) + ||σ||2

2
− σ(y)2

and hence Lqσ(uy) = σ− ||σ||2
2

σ(y)
εy. Therefore, the function Ĝ(x, y) = − σ(y)

||σ||2
2

uy(x), x, y ∈ V is a

Green kernel for V . Moreover, G̃ is another Green kernel for V iff for all y ∈ V , G̃y = Ĝy+τ(y)σ,
where τ(y) ∈ IR and hence σ(x)

σ(y) G̃(y, y) − G̃(x, y) = σ(y)
||σ||2

2

uy(x) > 0 for x 6= y. Therefore,

G̃y <
σ

σ(y)
G̃y(y) on V \ {y}. In addition, the orthogonal Green kernel for V is obtained by

choosing τ(y) = σ(y) ||σ||−4
2
||σ uy|| and the characterization of symmetric Green kernels follows

from the last claim of Proposition 5.8.
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Observe that the formula given in the above proposition for the Green kernels for V associated
with Lq does not depend on the choice of σ ∈ C∗(V ) such that q = qσ. In fact, if µ ∈ C∗(V ) is
such that qµ = qσ, then µ = aσ, a > 0 and hence for all y ∈ V the unique solution of Lq(v) = µ
on V \ {y}, v(y) = 0 is vy = auy. Therefore,

σ(y)
||σ||4

2

(
||σ uy||σ(x)− ||σ||2

2
uy(x)

)
=

µ(y)
||µ||4

2

(
||µ vy||µ(x)− ||µ||2

2
vy(x)

)

and both expressions determine the orthogonal Green kernel for V .

On the other hand, when σ is a constant function, and hence q = 0, then uy = σ νy for
all y ∈ V and therefore the function G̃(x, y) = − 1

n νy(x), x, y ∈ V determines a Green kernel
for V , associated with the combinatorial Laplacian. Moreover any Green kernel for V has the
expression G̃(x, y) = − 1

n νy(x) + τ(y) for all x, y ∈ V where τ ∈ C(V ) and the orthogonal Green
kernel for V associated with the combinatorial Laplacian is given by

G(x, y) =
1
n2

(
||νy|| − n νy(x)

)
, for all x, y ∈ V.

This formula was obtained in [4].

After the above proposition, to express the orthogonal Green kernel for V in terms of equi-
librium measures for the sets with cardinality n− 1, it is enough to express each function uy by

means of this type of measures. Since for all y ∈ V , uy(x) =
∫

V
GV \{y}(x, z) σ(z) dz and from

identity (4), GV \{y}(x, z) =
(
1− Lqσ(νV \{y,z}(z)

)−1 (
νy(x) − νV \{y,z}(x)

)
, for all x, y, z ∈ V ,

it is enough to express νV \{y,z} by means of equilibrium measures for the sets with cardinality
n − 1. For that we prove a more general result: if q = qσ, the equilibrium measure for each
proper subset F can be expressed as a linear combination of σ and the equilibrium measures
for the sets F ∪ {y} with y ∈ δ(F ). So, iterating the argument it follows that the equilibrium
measure for F can be obtained by means of a suitable linear combination of σ and {νy}y∈δ(F ).

Proposition 6.11 Suppose that q = qσ and consider F ⊂ V such that 1 ≤ |F | ≤ n− 2. Then,

νF =

(∫

δ(F )

σ(y)
νF∪{y}(y)

dy

)−1 (∫

δ(F )

σ(y)
νF∪{y}(y)

νF∪{y} dy − σ

)
1F̄ .

In particular, for each x, y ∈ V such that x 6= y, it is verified that

νV \{x,y} =
(
σ(x) νx(y) + σ(y) νy(x)

)−1(
σ(x) νx(y) νy + σ(y) νy(x) νx − νx(y) νy(x)σ

)
.

Proof. As |F c| ≥ 2, then for each y ∈ F c, F ∪{y} is a proper subset and hence there exists the
equilibrium measure for F ∪ {y}. Consider now {A,B} a partition of F c in such a way that A
and B are non empty subsets. Also consider u, v ∈ C(V ) the solutions of the following boundary
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value problems

Lqσ(u) = 0 on F

u = σ on A

u = 0 on B





and

Lqσ(v) = 0 on F

v = 0 on A

v = σ on B,





respectively. Then, from definition of the Poisson kernel for F , we have that

u(x) =
∫

F c
PF (x, y) σ|A(y) dy =

∫

A
PF (x, y) σ(y) dy,

v(x) =
∫

F c
PF (x, y) σ|B (y) dy =

∫

B
PF (x, y) σ(y) dy.

Keeping in mind the expression for PF obtained in part (ii) of Proposition 6.7 we have that

u =
∫

A

σ(y)
νF∪{y}(y)

νF∪{y} dy −
( ∫

A

σ(y)
νF∪{y}(y)

dy

)
νF ,

v =
∫

B

σ(y)
νF∪{y}(y)

νF∪{y} dy −
( ∫

B

σ(y)
νF∪{y}(y)

dy

)
νF .

On the other hand, since Lqσ(σ) = 0 it is clear that u + v = σ and hence

σ =
∫

F c

σ(y)
νF∪{y}(y)

νF∪{y} dy −
( ∫

F c

σ(y)
νF∪{y}(y)

dy

)
νF .

Observe that when y /∈ δ(F ) then νF∪{y} = νF + ν{y}, which implies that νF∪{y}(y) = ν{y}(y)
and ∫

Ext(F )

σ(y)
νF∪{y}(y)

νF∪{y} dy −
(∫

Ext(F )

σ(y)
νF∪{y}(y)

dy

)
νF = σ 1Ext(F)

and therefore,

νF =

(∫

δ(F )

σ(y)
νF∪{y}(y)

dy

)−1 (∫

δ(F )

σ(y)
νF∪{y}(y)

νF∪{y} dy − σ 1F̄

)
.

In particular, when F = V \ {x, y}, then F ∪ {y} = V \ {x}, F ∪ {x} = V \ {y} and hence

νV \{x,y} =

(
σ(y)
νx(y)

+
σ(x)
νy(x)

)−1 (
σ(y)
νx(y)

νx +
σ(x)
νy(x)

νy − σ

)

=
νx(y) νy(x)

σ(x) νx(y) + σ(y) νy(x)

(
σ(y)
νx(y)

νx +
σ(x)
νy(x)

νy − σ

)
.
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Proposition 6.12 If q = qσ, then for all x, y, z ∈ V we have the following expressions

GV \{y}(x, z) =
1
||σ||

σ(z)
σ(y)

(
σ(y) νy(x) + σ(x) νz(y)− σ(y) νz(x)

)
,

P V \{y,z}(x, y) =
(
σ(z) νz(y) + σ(y) νy(z)

)−1(
σ(z) νz(x) + σ(x) νy(z)− σ(z) νy(x)

)
,

P V \{y,z}(x, z) =
(
σ(z) νz(y) + σ(y) νy(z)

)−1(
σ(y) νy(x) + σ(x) νz(y)− σ(y) νz(x)

)
.

Proof. First, applying the above proposition, we have that for all y, z ∈ V with z 6= y,

νy − νV \{y,z} =
(
σ(z) νz(y) + σ(y) νy(z)

)−1
νy(z)

(
σ(y) (νy − νz) + νz(y) σ

)

and keeping in mind that Lqσ(νz)(z) = 1− ||σ||
σ(z)

and Lqσ(νy)(z) = 1,

1− Lqσ(νV \{y,z})(z) =
σ(y)
σ(z)

||σ||
(
σ(z) νz(y) + σ(y) νy(z)

)−1
νy(z).

Finally, we obtain the formula for GV \{y} by replacing the above identities in (4) and the
formulae for the P V \{y,z} by applying the relation between the Green and Poisson kernels given
in Proposition 5.10.

The symmetry of the Green kernel for each set of the form V \ {y} leads to the following
result about the relation between the values νy(x) and νx(y).

Corollary 6.13 When q = qσ, then

σ(x) νx(y) = σ(y) νy(x) + ||σ||−1σ(x) σ(y)
(
||νx|| − ||νy||

)
for all x, y ∈ V.

In particular, σ(x) νx(y) = σ(y) νy(x) iff capqσ
(V \ {x}) = capqσ

(V \ {y}).

Proof. For fixed y ∈ V , by applying the formula for GV \{y} given at the above proposition,
for all x ∈ V we get that

νy(x) =
∫

V
GV \{y}(x, z) dz = νy(x) +

1
||σ||

1
σ(y)

∫

V
σ(z)

(
σ(x) νz(y)− σ(y) νz(x)

)
dz

which implies that
∫

V
σ(z)

(
σ(x) νz(y) − σ(y) νz(x)

)
dz = 0. On the other hand, applying the

symmetry of GV \{y} we obtain that

σ(z)
(
σ(y) νy(x)− σ(x) νx(y)

)
= σ(x)σ(y)

(
νy(z)− νx(z)

)
+ σ(z)

(
σ(y) νz(x)− σ(x) νz(y)

)
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and hence the result follows by integrating with respect to z.

Observe that when σ is a constant function, then the above formula becomes νx(y) = νy(x)+
1
n (||νx|| − ||νy||) for all x, y ∈ V . Of course, this identity can be directly obtained from the
expression of the orthogonal Green kernel for V associated with the combinatorial Laplacian.

Proposition 6.14 When q = qσ, the orthogonal Green kernel for V is given by

G(x, y) = α σ(x) σ(y)
∫

V
σ(z) νy(z) dz − ||σ||−1σ(y) νy(x)

+ α σ(y)
∫

V
σ2(z) νz(x) dz − β σ(x)σ(y)

∫

V

∫

V
σ2(z) σ(w) νz(w) dz dw,

where α = ||σ||−1||σ||−2
2

and β = ||σ||−1||σ||−4
2

.

Proof. From Proposition 6.10, we know that G(x, y) =
||σ uy||
||σ||4

2

σ(x) σ(y)− σ(y)
||σ||2

2

uy(x), where

uy(x) =
∫

V
GV \{y}(x, z) σ(z) dz, for all x, y ∈ V . Applying the formula for GV \{y} obtained in

the above proposition we have that

uy(x) =
||σ||2

2

||σ|| νy(x) +
1
||σ||

σ(x)
σ(y)

∫

V
νz(y) σ(z)2 dz − 1

||σ||
∫

V
νz(x) σ(z)2dz,

||σ uy|| =
||σ||2

2

||σ||
∫

V
νy(z) σ(z) dz +

||σ||2
2

||σ||
1

σ(y)

∫

V
νz(y)σ(z)2 dz

− 1
||σ||

∫

V

∫

V
νz(w)σ(z)2σ(w) dz dw

and the expression for G follows by replacing uy and ||σ uy|| in the formula given at the beginning
of the proof.

The above formula allows us to obtain an expression of the effective resistance in terms of
equilibrium measures. Recall that when talking about effective resistance we need to consider
σ as the unique normalized function such that q = qσ. From now on, we consider that function
σ ∈ C∗n(V ) and we suppose that q = qσ.

Proposition 6.15 For all x, y ∈ V ,

Rσ(x, y) =
1
n

(
νx(y)
σ(y)

+
νy(x)
σ(x)

)
.

36



Proof. Given x, y ∈ V , if we consider u = σ(x) P
V \{x,y}
x then Lqσ(u) = 0 on V \ {x, y},

u(x) = σ(x), u(y) = 0 and hence Cσ(x, y) = σ(x)2Lqσ(P V \{x,y}
x )(x). Taking into account that

P V \{x,y}
x =

(
σ(x) νx(y) + σ(y) νy(x)

)−1(
σ(y) νy + σ νx(y)− σ(y) νx

)
, we obtain that

Lqσ(P V \{x,y}
x ) = n

(
σ(x) νx(y) + σ(y) νy(x)

)−1
σ(y)

1
σ

(
εx − εy

)
,

which implies that Cσ(x, y) = n
(
σ(x) νx(y) + σ(y) νy(x)

)−1
σ(y) σ(x).

The above formula for Rσ generalizes the one obtained in [5], when q = 0. On the other
hand, we next obtain a generalization of the so-called Foster’s Theorem, whose proof is obtained
directly from the expression of the effective resistance. For other type of proofs, see for instance
[17, 18].

Corollary 6.16 (Foster’s Theorem) If q = qσ, then it is verified that
∫

V

∫

V
Rσ(x, y) c(x, y) σ(x) σ(y) dx dy = 2 (n− 1).

Proof. First, observe that
∫

V

∫

V
σ(x) νx(y) c(x, y) dx dy =

∫

V

∫

V
σ(y) νy(x) c(x, y) dx dy, since

c is a symmetric function. Taking into account that Rσ(x, y) σ(x) σ(y) = n−1
(
σ(x) νx(y) +

σ(y) νy(x)
)
, we obtain

∫

V

∫

V
Rσ(x, y) c(x, y) σ(x) σ(y) dx dy =

2
n

∫

V
σ(x)

(∫

V
νx(y) c(x, y) dy

)
dx.

On the other hand, since
∫

V
νx(y) c(x, y) dx = −Lqσ(νx)(x) =

n

σ(x)
− 1 the right hand side of

the above identity equals
2
n

∫

V
(n− σ) dx = 2 (n− 1).

Let x, y, z ∈ V , then we say that z separates x and y iff the set V \ {z} is not connected
and x and y belong to different connected components of it. The following formula enables us
to express the Green kernel for subsets with cardinality n− 1 by means of effective resistances.
In its standard version, it can be found in [16, 17, 18].

Corollary 6.17 If q = qσ, then for all x, y, z ∈ V it is verified that

GV \{z}(x, y) =
1
2

σ(x) σ(y)
(
Rσ(x, z) + Rσ(x, y)−Rσ(x, y)

)
.

In particular, Rσ defines a distance on V . Moreover Rσ(x, y) = Rσ(x, z)+Rσ(z, y) iff z separates
x and y.
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Proof. From Proposition 6.12 we know that

GV \{z}(x, y) =
1
n

σ(x) σ(y)
(

νz(x)
σ(x)

+
νy(z)
σ(z)

− νy(x)
σ(x)

)
,

GV \{z}(y, x) =
1
n

σ(x) σ(y)
(

νz(y)
σ(y)

+
νx(z)
σ(z)

− νx(y)
σ(y)

)

and the first claim follows adding both sides of the above equalities and taking into account
that GV \{z} is symmetric. On the other hand, the symmetry of Rσ and the nonnegativity of
the Green kernels imply that the effective resistance is a distance on the vertex set. Moreover
Rσ(x, y) = Rσ(x, z) + Rσ(z, y), that is the triangle inequality is an equality, iff G

V \{z}
y (x) = 0.

From Proposition 5.10, this condition is equivalent to the fact that x and y are in different
connected components of V \ {z}.
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